基于新卷积的简化人工嗅粘膜信号处理技术

J. Gardner, J.E. Taylor
{"title":"基于新卷积的简化人工嗅粘膜信号处理技术","authors":"J. Gardner, J.E. Taylor","doi":"10.1109/SENSOR.2007.4300672","DOIUrl":null,"url":null,"abstract":"As our understanding of the human olfactory system increases, so does our ability to design novel architectures in order to mimic the biological system. The concept of an artificial olfactory mucosa represents a new development in the field of biomimetics. Here we analyse the signals produced by such a biomimetic system that contain a spatio-temporal element not previously encountered within the field of machine olfaction or so-called electronic noses. This paper explores the use of convolution-based signal processing methodologies to exploit this richer data-set and ameliorate the well-known problems of sensor noise and drift. We show that, under certain conditions, an artificial mucosa combined with a convolution based classifier performs better than a conventional electronic nose.","PeriodicalId":23295,"journal":{"name":"TRANSDUCERS 2007 - 2007 International Solid-State Sensors, Actuators and Microsystems Conference","volume":"1 1","pages":"2473-2476"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Novelconvolution Based Signal Processing Techniques for a Simplified Artificial Olfactory Mucosa\",\"authors\":\"J. Gardner, J.E. Taylor\",\"doi\":\"10.1109/SENSOR.2007.4300672\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As our understanding of the human olfactory system increases, so does our ability to design novel architectures in order to mimic the biological system. The concept of an artificial olfactory mucosa represents a new development in the field of biomimetics. Here we analyse the signals produced by such a biomimetic system that contain a spatio-temporal element not previously encountered within the field of machine olfaction or so-called electronic noses. This paper explores the use of convolution-based signal processing methodologies to exploit this richer data-set and ameliorate the well-known problems of sensor noise and drift. We show that, under certain conditions, an artificial mucosa combined with a convolution based classifier performs better than a conventional electronic nose.\",\"PeriodicalId\":23295,\"journal\":{\"name\":\"TRANSDUCERS 2007 - 2007 International Solid-State Sensors, Actuators and Microsystems Conference\",\"volume\":\"1 1\",\"pages\":\"2473-2476\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"TRANSDUCERS 2007 - 2007 International Solid-State Sensors, Actuators and Microsystems Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SENSOR.2007.4300672\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"TRANSDUCERS 2007 - 2007 International Solid-State Sensors, Actuators and Microsystems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SENSOR.2007.4300672","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

随着我们对人类嗅觉系统了解的增加,我们设计新颖建筑以模仿生物系统的能力也在增强。人工嗅觉粘膜的概念代表了仿生学领域的一个新发展。在这里,我们分析了由这种仿生系统产生的信号,该系统包含了以前在机器嗅觉或所谓的电子鼻领域中未遇到的时空元素。本文探讨了基于卷积的信号处理方法的使用,以利用这一更丰富的数据集,并改善众所周知的传感器噪声和漂移问题。我们表明,在某些条件下,人工粘膜结合基于卷积的分类器比传统的电子鼻表现更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Novelconvolution Based Signal Processing Techniques for a Simplified Artificial Olfactory Mucosa
As our understanding of the human olfactory system increases, so does our ability to design novel architectures in order to mimic the biological system. The concept of an artificial olfactory mucosa represents a new development in the field of biomimetics. Here we analyse the signals produced by such a biomimetic system that contain a spatio-temporal element not previously encountered within the field of machine olfaction or so-called electronic noses. This paper explores the use of convolution-based signal processing methodologies to exploit this richer data-set and ameliorate the well-known problems of sensor noise and drift. We show that, under certain conditions, an artificial mucosa combined with a convolution based classifier performs better than a conventional electronic nose.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信