具有平均流动的波纹多孔结构声传播模型

IF 1.9 4区 工程技术 Q2 ACOUSTICS
Harshavardhan Ronge, Shripad A. Upalkar, A. Wagh, Radhika Choudhary, Shankar Krishnan, S. Ramamoorthy
{"title":"具有平均流动的波纹多孔结构声传播模型","authors":"Harshavardhan Ronge, Shripad A. Upalkar, A. Wagh, Radhika Choudhary, Shankar Krishnan, S. Ramamoorthy","doi":"10.1115/1.4055847","DOIUrl":null,"url":null,"abstract":"\n For applications of porous materials where mean pressure drop is a concern, packaging the material into a corrugated structure is better compared to other geometries such as block or wedge shapes. The goal of this study is to integrate noise reduction functionality within that material, which requires an understanding of the sound propagation through corrugated porous structures, including flow effects. The corrugated porous structure involves porous partitions separating inlet and outlet fluid channels. The porous materials considered are periodic octet-truss and body-centered cubic unit cells, and sound propagation across these porous partitions is modeled using the Johnson-Champoux-Allard model. The predicted transmission loss (TL) is benchmarked using designed additively manufactured corrugated structures measured using a flow duct. The laminar flow regime is maintained across the porous structure to reduce flow-noise effects. It is shown that the TL for a given corrugated structure increases with a decrease in porosity, and the impact of flow becomes significant as the porosity decreases. The influence of flow on TL also depends on the unit cell configuration. Furthermore, the model provides insights on pressure and acoustic particle velocity distributions within the corrugated structure and reveals regions of the porous material that effectively participate in noise reduction.","PeriodicalId":49957,"journal":{"name":"Journal of Vibration and Acoustics-Transactions of the Asme","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2022-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A model for sound propagation through corrugated porous structures with mean flow\",\"authors\":\"Harshavardhan Ronge, Shripad A. Upalkar, A. Wagh, Radhika Choudhary, Shankar Krishnan, S. Ramamoorthy\",\"doi\":\"10.1115/1.4055847\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n For applications of porous materials where mean pressure drop is a concern, packaging the material into a corrugated structure is better compared to other geometries such as block or wedge shapes. The goal of this study is to integrate noise reduction functionality within that material, which requires an understanding of the sound propagation through corrugated porous structures, including flow effects. The corrugated porous structure involves porous partitions separating inlet and outlet fluid channels. The porous materials considered are periodic octet-truss and body-centered cubic unit cells, and sound propagation across these porous partitions is modeled using the Johnson-Champoux-Allard model. The predicted transmission loss (TL) is benchmarked using designed additively manufactured corrugated structures measured using a flow duct. The laminar flow regime is maintained across the porous structure to reduce flow-noise effects. It is shown that the TL for a given corrugated structure increases with a decrease in porosity, and the impact of flow becomes significant as the porosity decreases. The influence of flow on TL also depends on the unit cell configuration. Furthermore, the model provides insights on pressure and acoustic particle velocity distributions within the corrugated structure and reveals regions of the porous material that effectively participate in noise reduction.\",\"PeriodicalId\":49957,\"journal\":{\"name\":\"Journal of Vibration and Acoustics-Transactions of the Asme\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Vibration and Acoustics-Transactions of the Asme\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4055847\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vibration and Acoustics-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4055847","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 2

摘要

对于考虑平均压降的多孔材料的应用,将材料包装成波纹结构比其他几何形状(如块状或楔形)更好。本研究的目标是在该材料中集成降噪功能,这需要了解声音通过波纹多孔结构的传播,包括流动效应。所述波纹状多孔结构包括将入口和出口流体通道分开的多孔隔板。所考虑的多孔材料是周期性八元桁架和体心立方单元格,声音在这些多孔隔板上的传播使用Johnson-Champoux-Allard模型进行建模。预测的传输损耗(TL)是基准使用设计增材制造波纹结构测量使用流动管道。在多孔结构上保持层流状态,以减少流动噪声的影响。结果表明,对于给定的波纹结构,随着孔隙率的减小,热导率增大,并且随着孔隙率的减小,流动的影响变得显著。流动对TL的影响还取决于单元格的结构。此外,该模型提供了波纹结构内压力和声粒子速度分布的见解,并揭示了有效参与降噪的多孔材料区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A model for sound propagation through corrugated porous structures with mean flow
For applications of porous materials where mean pressure drop is a concern, packaging the material into a corrugated structure is better compared to other geometries such as block or wedge shapes. The goal of this study is to integrate noise reduction functionality within that material, which requires an understanding of the sound propagation through corrugated porous structures, including flow effects. The corrugated porous structure involves porous partitions separating inlet and outlet fluid channels. The porous materials considered are periodic octet-truss and body-centered cubic unit cells, and sound propagation across these porous partitions is modeled using the Johnson-Champoux-Allard model. The predicted transmission loss (TL) is benchmarked using designed additively manufactured corrugated structures measured using a flow duct. The laminar flow regime is maintained across the porous structure to reduce flow-noise effects. It is shown that the TL for a given corrugated structure increases with a decrease in porosity, and the impact of flow becomes significant as the porosity decreases. The influence of flow on TL also depends on the unit cell configuration. Furthermore, the model provides insights on pressure and acoustic particle velocity distributions within the corrugated structure and reveals regions of the porous material that effectively participate in noise reduction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.20
自引率
11.80%
发文量
79
审稿时长
7 months
期刊介绍: The Journal of Vibration and Acoustics is sponsored jointly by the Design Engineering and the Noise Control and Acoustics Divisions of ASME. The Journal is the premier international venue for publication of original research concerning mechanical vibration and sound. Our mission is to serve researchers and practitioners who seek cutting-edge theories and computational and experimental methods that advance these fields. Our published studies reveal how mechanical vibration and sound impact the design and performance of engineered devices and structures and how to control their negative influences. Vibration of continuous and discrete dynamical systems; Linear and nonlinear vibrations; Random vibrations; Wave propagation; Modal analysis; Mechanical signature analysis; Structural dynamics and control; Vibration energy harvesting; Vibration suppression; Vibration isolation; Passive and active damping; Machinery dynamics; Rotor dynamics; Acoustic emission; Noise control; Machinery noise; Structural acoustics; Fluid-structure interaction; Aeroelasticity; Flow-induced vibration and noise.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信