{"title":"再现核希尔伯特空间的新特征及其在度量几何中的应用","authors":"D. Alpay, P. Jorgensen","doi":"10.7494/OPMATH.2021.41.3.283","DOIUrl":null,"url":null,"abstract":"We give two new global and algorithmic constructions of the reproducing kernel Hilbert space associated to a positive definite kernel. We further present ageneral positive definite kernel setting using bilinear forms, and we provide new examples. Our results cover the case of measurable positive definite kernels, and we give applications to both stochastic analysisand metric geometry and provide a number of examples.","PeriodicalId":8426,"journal":{"name":"arXiv: Functional Analysis","volume":"51 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"New characterizations of reproducing kernel Hilbert spaces and applications to metric geometry\",\"authors\":\"D. Alpay, P. Jorgensen\",\"doi\":\"10.7494/OPMATH.2021.41.3.283\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give two new global and algorithmic constructions of the reproducing kernel Hilbert space associated to a positive definite kernel. We further present ageneral positive definite kernel setting using bilinear forms, and we provide new examples. Our results cover the case of measurable positive definite kernels, and we give applications to both stochastic analysisand metric geometry and provide a number of examples.\",\"PeriodicalId\":8426,\"journal\":{\"name\":\"arXiv: Functional Analysis\",\"volume\":\"51 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Functional Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7494/OPMATH.2021.41.3.283\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Functional Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7494/OPMATH.2021.41.3.283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
New characterizations of reproducing kernel Hilbert spaces and applications to metric geometry
We give two new global and algorithmic constructions of the reproducing kernel Hilbert space associated to a positive definite kernel. We further present ageneral positive definite kernel setting using bilinear forms, and we provide new examples. Our results cover the case of measurable positive definite kernels, and we give applications to both stochastic analysisand metric geometry and provide a number of examples.