带漂移贝塞尔过程最后零反正弦律的独立分解

Hugo Panzo
{"title":"带漂移贝塞尔过程最后零反正弦律的独立分解","authors":"Hugo Panzo","doi":"10.1214/21-ecp405","DOIUrl":null,"url":null,"abstract":"We show that the last zero before time $t$ of a recurrent Bessel process with drift starting at $0$ has the same distribution as the product of an independent right censored exponential random variable and a beta random variable. This extends a recent result of Schulte-Geers and Stadje (2017) from Brownian motion with drift to recurrent Bessel processes with drift. Our proof is intuitive and direct while avoiding heavy computations. For this we develop a novel additive decomposition for the square of a Bessel process with drift that may be of independent interest.","PeriodicalId":8470,"journal":{"name":"arXiv: Probability","volume":"2015 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Independent factorization of the last zero arcsine law for Bessel processes with drift\",\"authors\":\"Hugo Panzo\",\"doi\":\"10.1214/21-ecp405\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that the last zero before time $t$ of a recurrent Bessel process with drift starting at $0$ has the same distribution as the product of an independent right censored exponential random variable and a beta random variable. This extends a recent result of Schulte-Geers and Stadje (2017) from Brownian motion with drift to recurrent Bessel processes with drift. Our proof is intuitive and direct while avoiding heavy computations. For this we develop a novel additive decomposition for the square of a Bessel process with drift that may be of independent interest.\",\"PeriodicalId\":8470,\"journal\":{\"name\":\"arXiv: Probability\",\"volume\":\"2015 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Probability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/21-ecp405\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/21-ecp405","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了漂移从$0$开始的循环贝塞尔过程在时间$t$之前的最后一个零与独立的右截尾指数随机变量和beta随机变量的乘积具有相同的分布。这将Schulte-Geers和Stadje(2017)最近的结果从带漂移的布朗运动扩展到带漂移的循环贝塞尔过程。我们的证明是直观和直接的,同时避免了繁重的计算。为此,我们开发了一种新的具有漂移的贝塞尔过程的平方的加性分解,这可能是独立的兴趣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Independent factorization of the last zero arcsine law for Bessel processes with drift
We show that the last zero before time $t$ of a recurrent Bessel process with drift starting at $0$ has the same distribution as the product of an independent right censored exponential random variable and a beta random variable. This extends a recent result of Schulte-Geers and Stadje (2017) from Brownian motion with drift to recurrent Bessel processes with drift. Our proof is intuitive and direct while avoiding heavy computations. For this we develop a novel additive decomposition for the square of a Bessel process with drift that may be of independent interest.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信