过渡平面库埃特流模型

Paul Manneville, Fabien Locher
{"title":"过渡平面库埃特流模型","authors":"Paul Manneville,&nbsp;Fabien Locher","doi":"10.1016/S1287-4620(00)00113-7","DOIUrl":null,"url":null,"abstract":"<div><p>A simplified model of plane Couette flow is derived by means of a cross-stream (<em>y</em>) Galerkin expansion in terms of trigonometric functions appropriate for idealized stress-free boundary conditions at the plates. A set of partial differential equations is obtained, governing the in-plane (<em>x</em>–<em>z</em>) space-dependence of a velocity field taken in the form: <em>u</em>=<em>U</em><sub>0</sub>(<em>x</em>,<em>z</em>,<em>t</em>)+[1+<em>U</em><sub>1</sub>(<em>x</em>,<em>z</em>,<em>t</em>)]sin(<em>πy</em>/2), <em>v</em>=<em>V</em><sub>1</sub>(<em>x</em>,<em>z</em>,<em>t</em>)cos(<em>πy</em>/2), <em>w</em>=<em>W</em><sub>0</sub>(<em>x</em>,<em>z</em>,<em>t</em>)+<em>W</em><sub>1</sub>(<em>x</em>,<em>z</em>,<em>t</em>)sin(<em>πy</em>/2). Beyond Lorenz-like Waleffe's modeling (Waleffe 1997), this Swift–Hohenberg type of approach is expected to give an access to the microscopic mechanism of spatiotemporal intermittency typical of the transition to turbulence in plane Couette flow (Pomeau 1986, Bergé et al. 1998).</p></div>","PeriodicalId":100303,"journal":{"name":"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics-Physics-Astronomy","volume":"328 2","pages":"Pages 159-164"},"PeriodicalIF":0.0000,"publicationDate":"2000-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1287-4620(00)00113-7","citationCount":"13","resultStr":"{\"title\":\"A model for transitional plane Couette flow\",\"authors\":\"Paul Manneville,&nbsp;Fabien Locher\",\"doi\":\"10.1016/S1287-4620(00)00113-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A simplified model of plane Couette flow is derived by means of a cross-stream (<em>y</em>) Galerkin expansion in terms of trigonometric functions appropriate for idealized stress-free boundary conditions at the plates. A set of partial differential equations is obtained, governing the in-plane (<em>x</em>–<em>z</em>) space-dependence of a velocity field taken in the form: <em>u</em>=<em>U</em><sub>0</sub>(<em>x</em>,<em>z</em>,<em>t</em>)+[1+<em>U</em><sub>1</sub>(<em>x</em>,<em>z</em>,<em>t</em>)]sin(<em>πy</em>/2), <em>v</em>=<em>V</em><sub>1</sub>(<em>x</em>,<em>z</em>,<em>t</em>)cos(<em>πy</em>/2), <em>w</em>=<em>W</em><sub>0</sub>(<em>x</em>,<em>z</em>,<em>t</em>)+<em>W</em><sub>1</sub>(<em>x</em>,<em>z</em>,<em>t</em>)sin(<em>πy</em>/2). Beyond Lorenz-like Waleffe's modeling (Waleffe 1997), this Swift–Hohenberg type of approach is expected to give an access to the microscopic mechanism of spatiotemporal intermittency typical of the transition to turbulence in plane Couette flow (Pomeau 1986, Bergé et al. 1998).</p></div>\",\"PeriodicalId\":100303,\"journal\":{\"name\":\"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics-Physics-Astronomy\",\"volume\":\"328 2\",\"pages\":\"Pages 159-164\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1287-4620(00)00113-7\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics-Physics-Astronomy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1287462000001137\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics-Physics-Astronomy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1287462000001137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

利用适于板上理想无应力边界条件的三角函数,用横流(y)伽辽金展开导出了平面库埃特流的简化模型。得到了速度场平面内(x - z)空间依赖方程:u=U0(x,z,t)+[1+U1(x,z,t)]sin(πy/2), v=V1(x,z,t)cos(πy/2), w=W0(x,z,t)+W1(x,z,t)sin(πy/2)。除了Lorenz-like Waleffe的模型(Waleffe 1997)之外,这种Swift-Hohenberg类型的方法有望为平面Couette流过渡到湍流的时空间歇性的微观机制提供途径(Pomeau 1986, berg et al. 1998)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A model for transitional plane Couette flow

A simplified model of plane Couette flow is derived by means of a cross-stream (y) Galerkin expansion in terms of trigonometric functions appropriate for idealized stress-free boundary conditions at the plates. A set of partial differential equations is obtained, governing the in-plane (xz) space-dependence of a velocity field taken in the form: u=U0(x,z,t)+[1+U1(x,z,t)]sin(πy/2), v=V1(x,z,t)cos(πy/2), w=W0(x,z,t)+W1(x,z,t)sin(πy/2). Beyond Lorenz-like Waleffe's modeling (Waleffe 1997), this Swift–Hohenberg type of approach is expected to give an access to the microscopic mechanism of spatiotemporal intermittency typical of the transition to turbulence in plane Couette flow (Pomeau 1986, Bergé et al. 1998).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信