{"title":"耦合磁-准静态系统的无源性、端口-哈密顿公式和解估计","authors":"Timo Reis, T. Stykel","doi":"10.3934/eect.2023008","DOIUrl":null,"url":null,"abstract":"We study a~quasilinear coupled magneto-quasistatic model from a~systems theoretic perspective.} First, by taking the injected voltages as input and the associated currents as output, we prove that the magneto-quasistatic system is passive. Moreover, by defining suitable Dirac and resistive structures, we show that it admits a~representation as a~port-Hamiltonian system. Thereafter, we consider dependence on initial and input data. We show that the current and the magnetic vector potential can be estimated by means of the initial magnetic vector potential and the voltage. We also analyse the free dynamics of the system and study the asymptotic behavior of the solutions for $t\\to\\infty$.","PeriodicalId":48833,"journal":{"name":"Evolution Equations and Control Theory","volume":"29 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Passivity, port-hamiltonian formulation and solution estimates for a coupled magneto-quasistatic system\",\"authors\":\"Timo Reis, T. Stykel\",\"doi\":\"10.3934/eect.2023008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study a~quasilinear coupled magneto-quasistatic model from a~systems theoretic perspective.} First, by taking the injected voltages as input and the associated currents as output, we prove that the magneto-quasistatic system is passive. Moreover, by defining suitable Dirac and resistive structures, we show that it admits a~representation as a~port-Hamiltonian system. Thereafter, we consider dependence on initial and input data. We show that the current and the magnetic vector potential can be estimated by means of the initial magnetic vector potential and the voltage. We also analyse the free dynamics of the system and study the asymptotic behavior of the solutions for $t\\\\to\\\\infty$.\",\"PeriodicalId\":48833,\"journal\":{\"name\":\"Evolution Equations and Control Theory\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Evolution Equations and Control Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/eect.2023008\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolution Equations and Control Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/eect.2023008","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Passivity, port-hamiltonian formulation and solution estimates for a coupled magneto-quasistatic system
We study a~quasilinear coupled magneto-quasistatic model from a~systems theoretic perspective.} First, by taking the injected voltages as input and the associated currents as output, we prove that the magneto-quasistatic system is passive. Moreover, by defining suitable Dirac and resistive structures, we show that it admits a~representation as a~port-Hamiltonian system. Thereafter, we consider dependence on initial and input data. We show that the current and the magnetic vector potential can be estimated by means of the initial magnetic vector potential and the voltage. We also analyse the free dynamics of the system and study the asymptotic behavior of the solutions for $t\to\infty$.
期刊介绍:
EECT is primarily devoted to papers on analysis and control of infinite dimensional systems with emphasis on applications to PDE''s and FDEs. Topics include:
* Modeling of physical systems as infinite-dimensional processes
* Direct problems such as existence, regularity and well-posedness
* Stability, long-time behavior and associated dynamical attractors
* Indirect problems such as exact controllability, reachability theory and inverse problems
* Optimization - including shape optimization - optimal control, game theory and calculus of variations
* Well-posedness, stability and control of coupled systems with an interface. Free boundary problems and problems with moving interface(s)
* Applications of the theory to physics, chemistry, engineering, economics, medicine and biology