{"title":"基于agent的创新扩散梯度模型的标定","authors":"Florian Kotthoff, T. Hamacher","doi":"10.18564/jasss.4861","DOIUrl":null,"url":null,"abstract":": Consumer behavior and the decision to adopt an innovation are governed by various motives, which models find difficult to represent. A promising way to introduce the required complexity into modeling approaches is to simulate all consumers individually within an agent-based model (ABM). However, ABMs are complex and introduce new challenges. Especially the calibration of empirical ABMs was identified as a key difficulty in many works. In this work, a general ABM for simulating the Diffusion of Innovations is described. The ABM is differentiable and can employ gradient-based calibration methods, enabling the simultaneous calibration of large numbers of free parameters in large-scale models. The ABM and calibration method are tested by fitting a simulation with 25 free parameters to the large data set of privately owned photovoltaic systems in Germany, where the model achieves a coefficient of determination of R 2 ≃ 0 . 7 .","PeriodicalId":14675,"journal":{"name":"J. Artif. Soc. Soc. Simul.","volume":"50 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Calibrating Agent-Based Models of Innovation Diffusion with Gradients\",\"authors\":\"Florian Kotthoff, T. Hamacher\",\"doi\":\"10.18564/jasss.4861\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": Consumer behavior and the decision to adopt an innovation are governed by various motives, which models find difficult to represent. A promising way to introduce the required complexity into modeling approaches is to simulate all consumers individually within an agent-based model (ABM). However, ABMs are complex and introduce new challenges. Especially the calibration of empirical ABMs was identified as a key difficulty in many works. In this work, a general ABM for simulating the Diffusion of Innovations is described. The ABM is differentiable and can employ gradient-based calibration methods, enabling the simultaneous calibration of large numbers of free parameters in large-scale models. The ABM and calibration method are tested by fitting a simulation with 25 free parameters to the large data set of privately owned photovoltaic systems in Germany, where the model achieves a coefficient of determination of R 2 ≃ 0 . 7 .\",\"PeriodicalId\":14675,\"journal\":{\"name\":\"J. Artif. Soc. Soc. Simul.\",\"volume\":\"50 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Artif. Soc. Soc. Simul.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18564/jasss.4861\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Artif. Soc. Soc. Simul.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18564/jasss.4861","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Calibrating Agent-Based Models of Innovation Diffusion with Gradients
: Consumer behavior and the decision to adopt an innovation are governed by various motives, which models find difficult to represent. A promising way to introduce the required complexity into modeling approaches is to simulate all consumers individually within an agent-based model (ABM). However, ABMs are complex and introduce new challenges. Especially the calibration of empirical ABMs was identified as a key difficulty in many works. In this work, a general ABM for simulating the Diffusion of Innovations is described. The ABM is differentiable and can employ gradient-based calibration methods, enabling the simultaneous calibration of large numbers of free parameters in large-scale models. The ABM and calibration method are tested by fitting a simulation with 25 free parameters to the large data set of privately owned photovoltaic systems in Germany, where the model achieves a coefficient of determination of R 2 ≃ 0 . 7 .