预训练深度网络后更快的强化学习来预测状态动态

C. Anderson, Minwoo Lee, D. Elliott
{"title":"预训练深度网络后更快的强化学习来预测状态动态","authors":"C. Anderson, Minwoo Lee, D. Elliott","doi":"10.1109/IJCNN.2015.7280824","DOIUrl":null,"url":null,"abstract":"Deep learning algorithms have recently appeared that pretrain hidden layers of neural networks in unsupervised ways, leading to state-of-the-art performance on large classification problems. These methods can also pretrain networks used for reinforcement learning. However, this ignores the additional information that exists in a reinforcement learning paradigm via the ongoing sequence of state, action, new state tuples. This paper demonstrates that learning a predictive model of state dynamics can result in a pretrained hidden layer structure that reduces the time needed to solve reinforcement learning problems.","PeriodicalId":6539,"journal":{"name":"2015 International Joint Conference on Neural Networks (IJCNN)","volume":"50 1","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":"{\"title\":\"Faster reinforcement learning after pretraining deep networks to predict state dynamics\",\"authors\":\"C. Anderson, Minwoo Lee, D. Elliott\",\"doi\":\"10.1109/IJCNN.2015.7280824\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep learning algorithms have recently appeared that pretrain hidden layers of neural networks in unsupervised ways, leading to state-of-the-art performance on large classification problems. These methods can also pretrain networks used for reinforcement learning. However, this ignores the additional information that exists in a reinforcement learning paradigm via the ongoing sequence of state, action, new state tuples. This paper demonstrates that learning a predictive model of state dynamics can result in a pretrained hidden layer structure that reduces the time needed to solve reinforcement learning problems.\",\"PeriodicalId\":6539,\"journal\":{\"name\":\"2015 International Joint Conference on Neural Networks (IJCNN)\",\"volume\":\"50 1\",\"pages\":\"1-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"42\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Joint Conference on Neural Networks (IJCNN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2015.7280824\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Joint Conference on Neural Networks (IJCNN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2015.7280824","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 42

摘要

最近出现了深度学习算法,以无监督的方式预训练神经网络的隐藏层,从而在大型分类问题上取得了最先进的性能。这些方法也可以预训练用于强化学习的网络。然而,这忽略了通过状态、动作、新状态元组的持续序列存在于强化学习范式中的附加信息。本文证明,学习状态动力学的预测模型可以产生预训练的隐藏层结构,从而减少解决强化学习问题所需的时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Faster reinforcement learning after pretraining deep networks to predict state dynamics
Deep learning algorithms have recently appeared that pretrain hidden layers of neural networks in unsupervised ways, leading to state-of-the-art performance on large classification problems. These methods can also pretrain networks used for reinforcement learning. However, this ignores the additional information that exists in a reinforcement learning paradigm via the ongoing sequence of state, action, new state tuples. This paper demonstrates that learning a predictive model of state dynamics can result in a pretrained hidden layer structure that reduces the time needed to solve reinforcement learning problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信