SU(N)晶格Yang-Mills规范理论中的双绕组Wilson环

S. Kato, A. Shibata, K. Kondo
{"title":"SU(N)晶格Yang-Mills规范理论中的双绕组Wilson环","authors":"S. Kato, A. Shibata, K. Kondo","doi":"10.1103/physrevd.102.094521","DOIUrl":null,"url":null,"abstract":"We study double-winding Wilson loops in $SU(N)$ lattice Yang-Mills gauge theory by using both strong coupling expansions and numerical simulations. First, we examine how the area law falloff of a ``coplanar'' double-winding Wilson loop average depends on the number of color $N$. Indeed, we find that a coplanar double-winding Wilson loop average obeys a novel ``max-of-areas law'' for $N=3$ and the sum-of-areas law for $N\\geq 4$, although we reconfirm the difference-of-areas law for $N=2$. Second, we examine a ``shifted'' double-winding Wilson loop, where the two constituent loops are displaced from one another in a transverse direction. We evaluate its average by changing the distance of a transverse direction and we find that the long distance behavior does not depend on the number of color $N$, while the short distance behavior depends strongly on $N$.","PeriodicalId":8440,"journal":{"name":"arXiv: High Energy Physics - Lattice","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Double-winding Wilson loops in \\nSU(N)\\n lattice Yang-Mills gauge theory\",\"authors\":\"S. Kato, A. Shibata, K. Kondo\",\"doi\":\"10.1103/physrevd.102.094521\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study double-winding Wilson loops in $SU(N)$ lattice Yang-Mills gauge theory by using both strong coupling expansions and numerical simulations. First, we examine how the area law falloff of a ``coplanar'' double-winding Wilson loop average depends on the number of color $N$. Indeed, we find that a coplanar double-winding Wilson loop average obeys a novel ``max-of-areas law'' for $N=3$ and the sum-of-areas law for $N\\\\geq 4$, although we reconfirm the difference-of-areas law for $N=2$. Second, we examine a ``shifted'' double-winding Wilson loop, where the two constituent loops are displaced from one another in a transverse direction. We evaluate its average by changing the distance of a transverse direction and we find that the long distance behavior does not depend on the number of color $N$, while the short distance behavior depends strongly on $N$.\",\"PeriodicalId\":8440,\"journal\":{\"name\":\"arXiv: High Energy Physics - Lattice\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: High Energy Physics - Lattice\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevd.102.094521\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: High Energy Physics - Lattice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/physrevd.102.094521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文采用强耦合展开和数值模拟的方法研究了$SU(N)$晶格Yang-Mills规范理论中的双绕组Wilson环。首先,我们研究了“共面”双绕组威尔逊环平均的面积律衰减如何取决于颜色的数量$N$。事实上,我们发现共面双绕组威尔逊环平均服从新颖的“面积最大定律”$N=3$和面积和定律$N\geq 4$,尽管我们再次确认面积差异定律$N=2$。其次,我们研究了一个“位移”双绕组威尔逊环,其中两个组成环在横向方向上彼此移位。我们通过改变横方向的距离来评估其平均值,我们发现长距离行为不依赖于颜色的数量$N$,而短距离行为强烈依赖于$N$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Double-winding Wilson loops in SU(N) lattice Yang-Mills gauge theory
We study double-winding Wilson loops in $SU(N)$ lattice Yang-Mills gauge theory by using both strong coupling expansions and numerical simulations. First, we examine how the area law falloff of a ``coplanar'' double-winding Wilson loop average depends on the number of color $N$. Indeed, we find that a coplanar double-winding Wilson loop average obeys a novel ``max-of-areas law'' for $N=3$ and the sum-of-areas law for $N\geq 4$, although we reconfirm the difference-of-areas law for $N=2$. Second, we examine a ``shifted'' double-winding Wilson loop, where the two constituent loops are displaced from one another in a transverse direction. We evaluate its average by changing the distance of a transverse direction and we find that the long distance behavior does not depend on the number of color $N$, while the short distance behavior depends strongly on $N$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信