基于3D CNN的fMRI体积自动诊断ADHD

Gürcan Taşpinar, Nalan Özkurt
{"title":"基于3D CNN的fMRI体积自动诊断ADHD","authors":"Gürcan Taşpinar, Nalan Özkurt","doi":"10.21205/deufmd.2023257301","DOIUrl":null,"url":null,"abstract":"Attention deficit hyperactivity disorder (ADHD) is one of the most common mental health disorders and it is threatening especially to the academic performance of children. Its neurobiological diagnosis is essential for clinicians to treat ADHD patients properly. Along with machine learning algorithms, and neuroimaging technologies, especially functional magnetic resonance imaging is increasingly used as biomarker in attention deficit hyperactivity disorder. Also, machine learning methods have been becoming popular at last times. This study presents an optimized 3-dimensional convolutional neural network to classify functional magnetic resonance imaging volumes into two classes to assist experts in diagnosing ADHD. To demonstrate the importance of extracting 3D relationships of data, the method has been tested on ADHD-200 public datasets and its performance on the hold-out testing datasets has been evaluated. Then the network performance has been compared with several recent ADHD detection convolutional neural networks in the literature. It has been observed that the proposed network has a promising performance.","PeriodicalId":23481,"journal":{"name":"Uluslararası Muhendislik Arastirma ve Gelistirme Dergisi","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"3D CNN Based Automatic Diagnosis of ADHD Using fMRI Volumes\",\"authors\":\"Gürcan Taşpinar, Nalan Özkurt\",\"doi\":\"10.21205/deufmd.2023257301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Attention deficit hyperactivity disorder (ADHD) is one of the most common mental health disorders and it is threatening especially to the academic performance of children. Its neurobiological diagnosis is essential for clinicians to treat ADHD patients properly. Along with machine learning algorithms, and neuroimaging technologies, especially functional magnetic resonance imaging is increasingly used as biomarker in attention deficit hyperactivity disorder. Also, machine learning methods have been becoming popular at last times. This study presents an optimized 3-dimensional convolutional neural network to classify functional magnetic resonance imaging volumes into two classes to assist experts in diagnosing ADHD. To demonstrate the importance of extracting 3D relationships of data, the method has been tested on ADHD-200 public datasets and its performance on the hold-out testing datasets has been evaluated. Then the network performance has been compared with several recent ADHD detection convolutional neural networks in the literature. It has been observed that the proposed network has a promising performance.\",\"PeriodicalId\":23481,\"journal\":{\"name\":\"Uluslararası Muhendislik Arastirma ve Gelistirme Dergisi\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Uluslararası Muhendislik Arastirma ve Gelistirme Dergisi\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21205/deufmd.2023257301\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Uluslararası Muhendislik Arastirma ve Gelistirme Dergisi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21205/deufmd.2023257301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

注意缺陷多动障碍(Attention deficit hyperactivity disorder, ADHD)是最常见的心理健康障碍之一,尤其对儿童的学习成绩构成威胁。其神经生物学诊断对临床医生正确治疗ADHD患者至关重要。随着机器学习算法和神经成像技术的发展,尤其是功能性磁共振成像越来越多地被用作注意力缺陷多动障碍的生物标志物。此外,机器学习方法最近也变得流行起来。本研究提出了一种优化的三维卷积神经网络,将功能磁共振成像体积分为两类,以辅助专家诊断ADHD。为了证明提取数据三维关系的重要性,该方法已在ADHD-200公共数据集上进行了测试,并对其在hold out测试数据集上的性能进行了评估。然后将该网络的性能与文献中几种最新的ADHD检测卷积神经网络进行了比较。实验结果表明,该网络具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
3D CNN Based Automatic Diagnosis of ADHD Using fMRI Volumes
Attention deficit hyperactivity disorder (ADHD) is one of the most common mental health disorders and it is threatening especially to the academic performance of children. Its neurobiological diagnosis is essential for clinicians to treat ADHD patients properly. Along with machine learning algorithms, and neuroimaging technologies, especially functional magnetic resonance imaging is increasingly used as biomarker in attention deficit hyperactivity disorder. Also, machine learning methods have been becoming popular at last times. This study presents an optimized 3-dimensional convolutional neural network to classify functional magnetic resonance imaging volumes into two classes to assist experts in diagnosing ADHD. To demonstrate the importance of extracting 3D relationships of data, the method has been tested on ADHD-200 public datasets and its performance on the hold-out testing datasets has been evaluated. Then the network performance has been compared with several recent ADHD detection convolutional neural networks in the literature. It has been observed that the proposed network has a promising performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信