{"title":"二部点积图","authors":"Sean Bailey, David E. Brown","doi":"10.1080/23799927.2020.1779820","DOIUrl":null,"url":null,"abstract":"Given a bipartite graph , the bipartite dot product representation of G is a function and a positive threshold t such that for any and , if and only if . The minimum k such that a bipartite dot product representation exists for G is the bipartite dot product dimension of G, denoted . We will show that such representations exist for all bipartite graphs as well as give an upper bound for the bipartite dot product dimension of any graph. We will also characterize the bipartite graphs of bipartite dot product dimension 1 by their forbidden subgraphs.","PeriodicalId":37216,"journal":{"name":"International Journal of Computer Mathematics: Computer Systems Theory","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2020-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bipartite dot product graphs\",\"authors\":\"Sean Bailey, David E. Brown\",\"doi\":\"10.1080/23799927.2020.1779820\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a bipartite graph , the bipartite dot product representation of G is a function and a positive threshold t such that for any and , if and only if . The minimum k such that a bipartite dot product representation exists for G is the bipartite dot product dimension of G, denoted . We will show that such representations exist for all bipartite graphs as well as give an upper bound for the bipartite dot product dimension of any graph. We will also characterize the bipartite graphs of bipartite dot product dimension 1 by their forbidden subgraphs.\",\"PeriodicalId\":37216,\"journal\":{\"name\":\"International Journal of Computer Mathematics: Computer Systems Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2020-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computer Mathematics: Computer Systems Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/23799927.2020.1779820\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Mathematics: Computer Systems Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23799927.2020.1779820","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Given a bipartite graph , the bipartite dot product representation of G is a function and a positive threshold t such that for any and , if and only if . The minimum k such that a bipartite dot product representation exists for G is the bipartite dot product dimension of G, denoted . We will show that such representations exist for all bipartite graphs as well as give an upper bound for the bipartite dot product dimension of any graph. We will also characterize the bipartite graphs of bipartite dot product dimension 1 by their forbidden subgraphs.