二部点积图

IF 0.9 Q3 COMPUTER SCIENCE, THEORY & METHODS
Sean Bailey, David E. Brown
{"title":"二部点积图","authors":"Sean Bailey, David E. Brown","doi":"10.1080/23799927.2020.1779820","DOIUrl":null,"url":null,"abstract":"Given a bipartite graph , the bipartite dot product representation of G is a function and a positive threshold t such that for any and , if and only if . The minimum k such that a bipartite dot product representation exists for G is the bipartite dot product dimension of G, denoted . We will show that such representations exist for all bipartite graphs as well as give an upper bound for the bipartite dot product dimension of any graph. We will also characterize the bipartite graphs of bipartite dot product dimension 1 by their forbidden subgraphs.","PeriodicalId":37216,"journal":{"name":"International Journal of Computer Mathematics: Computer Systems Theory","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2020-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bipartite dot product graphs\",\"authors\":\"Sean Bailey, David E. Brown\",\"doi\":\"10.1080/23799927.2020.1779820\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a bipartite graph , the bipartite dot product representation of G is a function and a positive threshold t such that for any and , if and only if . The minimum k such that a bipartite dot product representation exists for G is the bipartite dot product dimension of G, denoted . We will show that such representations exist for all bipartite graphs as well as give an upper bound for the bipartite dot product dimension of any graph. We will also characterize the bipartite graphs of bipartite dot product dimension 1 by their forbidden subgraphs.\",\"PeriodicalId\":37216,\"journal\":{\"name\":\"International Journal of Computer Mathematics: Computer Systems Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2020-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computer Mathematics: Computer Systems Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/23799927.2020.1779820\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Mathematics: Computer Systems Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23799927.2020.1779820","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

给定一个二部图,G的二部点积表示是一个函数和一个正阈值t,使得对于任意且当且仅当。使G存在二部点积表示的最小k是G的二部点积维数,记为。我们将证明所有二部图都存在这样的表示,并给出任何图的二部点积维数的上界。我们也将用二部点积维数为1的二部图的禁忌子图来描述二部图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bipartite dot product graphs
Given a bipartite graph , the bipartite dot product representation of G is a function and a positive threshold t such that for any and , if and only if . The minimum k such that a bipartite dot product representation exists for G is the bipartite dot product dimension of G, denoted . We will show that such representations exist for all bipartite graphs as well as give an upper bound for the bipartite dot product dimension of any graph. We will also characterize the bipartite graphs of bipartite dot product dimension 1 by their forbidden subgraphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Computer Mathematics: Computer Systems Theory
International Journal of Computer Mathematics: Computer Systems Theory Computer Science-Computational Theory and Mathematics
CiteScore
1.80
自引率
0.00%
发文量
11
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信