基于API调用流的卷积神经网络恶意软件分类方法比较

Matthew Schofield, Gülsüm Alicioğlu, Bo Sun, Russell Binaco, Paul Turner, Cameron Thatcher, Alex Lam, Anthony F. Breitzman
{"title":"基于API调用流的卷积神经网络恶意软件分类方法比较","authors":"Matthew Schofield, Gülsüm Alicioğlu, Bo Sun, Russell Binaco, Paul Turner, Cameron Thatcher, Alex Lam, Anthony F. Breitzman","doi":"10.5121/IJNSA.2021.13201","DOIUrl":null,"url":null,"abstract":"Malicious software is constantly being developed and improved, so detection and classification of malwareis an ever-evolving problem. Since traditional malware detection techniques fail to detect new/unknown malware, machine learning algorithms have been used to overcome this disadvantage. We present a Convolutional Neural Network (CNN) for malware type classification based on the API (Application Program Interface) calls. This research uses a database of 7107 instances of API call streams and 8 different malware types:Adware, Backdoor, Downloader, Dropper, Spyware, Trojan, Virus,Worm. We used a 1-Dimensional CNN by mapping API calls as categorical and term frequency-inverse document frequency (TF-IDF) vectors and compared the results to other classification techniques.The proposed 1-D CNN outperformed other classification techniques with 91% overall accuracy for both categorical and TFIDF vectors.","PeriodicalId":93303,"journal":{"name":"International journal of network security & its applications","volume":"67 1","pages":"1-19"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Comparison of Malware Classification Methods using Convolutional Neural Network based on API Call Stream\",\"authors\":\"Matthew Schofield, Gülsüm Alicioğlu, Bo Sun, Russell Binaco, Paul Turner, Cameron Thatcher, Alex Lam, Anthony F. Breitzman\",\"doi\":\"10.5121/IJNSA.2021.13201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Malicious software is constantly being developed and improved, so detection and classification of malwareis an ever-evolving problem. Since traditional malware detection techniques fail to detect new/unknown malware, machine learning algorithms have been used to overcome this disadvantage. We present a Convolutional Neural Network (CNN) for malware type classification based on the API (Application Program Interface) calls. This research uses a database of 7107 instances of API call streams and 8 different malware types:Adware, Backdoor, Downloader, Dropper, Spyware, Trojan, Virus,Worm. We used a 1-Dimensional CNN by mapping API calls as categorical and term frequency-inverse document frequency (TF-IDF) vectors and compared the results to other classification techniques.The proposed 1-D CNN outperformed other classification techniques with 91% overall accuracy for both categorical and TFIDF vectors.\",\"PeriodicalId\":93303,\"journal\":{\"name\":\"International journal of network security & its applications\",\"volume\":\"67 1\",\"pages\":\"1-19\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of network security & its applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5121/IJNSA.2021.13201\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of network security & its applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/IJNSA.2021.13201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

恶意软件不断发展和改进,因此恶意软件的检测和分类是一个不断发展的问题。由于传统的恶意软件检测技术无法检测到新的/未知的恶意软件,机器学习算法被用来克服这一缺点。提出了一种基于API(应用程序接口)调用的卷积神经网络(CNN)进行恶意软件类型分类。本研究使用了一个包含7107个API调用流实例的数据库和8种不同的恶意软件类型:广告软件、后门软件、下载软件、丢弃软件、间谍软件、特洛伊木马、病毒、蠕虫。我们通过将API调用映射为分类和词频率逆文档频率(TF-IDF)向量来使用一维CNN,并将结果与其他分类技术进行比较。本文提出的1-D CNN在分类向量和TFIDF向量上的总体准确率均达到91%,优于其他分类技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparison of Malware Classification Methods using Convolutional Neural Network based on API Call Stream
Malicious software is constantly being developed and improved, so detection and classification of malwareis an ever-evolving problem. Since traditional malware detection techniques fail to detect new/unknown malware, machine learning algorithms have been used to overcome this disadvantage. We present a Convolutional Neural Network (CNN) for malware type classification based on the API (Application Program Interface) calls. This research uses a database of 7107 instances of API call streams and 8 different malware types:Adware, Backdoor, Downloader, Dropper, Spyware, Trojan, Virus,Worm. We used a 1-Dimensional CNN by mapping API calls as categorical and term frequency-inverse document frequency (TF-IDF) vectors and compared the results to other classification techniques.The proposed 1-D CNN outperformed other classification techniques with 91% overall accuracy for both categorical and TFIDF vectors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信