{"title":"一种新的更可靠和可扩展的仪表和控制系统体系结构","authors":"Shuqiao Zhou, Chao Guo, Duo Li, Xiaojin Huang","doi":"10.1115/ICONE26-81570","DOIUrl":null,"url":null,"abstract":"Digital instrumentation and control (I&C) systems are widely used in many industrial areas. In the recent years, the digitalization process for nuclear power plants has also been moving on rapidly. Full digital I&C systems are now adopted in almost all new constructed nuclear power plants. The architecture of a digital I&C system plays a pivotal role for the safety, reliability and security of the whole nuclear power plant. Moreover, for the advanced small modular reactors, both the reliability and extensibility of I&C systems are especially required.\n Therefore, in this paper we propose a new architecture of the digital I&C systems based on the developed computing performance and communication technology. The control units and the data servers in the new proposed architecture are decentralized and working in a mutually redundant and distributed computing/storage way. Thus the architecture is with a flexible extensibility. Moreover, other control units or data servers can take over the functions of a certain number of failed ones. This characteristic benefits the system’s reliability significantly. The reliability of the new architecture is theoretically evaluated and the results demonstrate that it is much higher than that of the traditional architecture of I&C systems.","PeriodicalId":65607,"journal":{"name":"International Journal of Plant Engineering and Management","volume":"59 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel More Reliable and Extensible Architecture of Instrumentation and Control Systems\",\"authors\":\"Shuqiao Zhou, Chao Guo, Duo Li, Xiaojin Huang\",\"doi\":\"10.1115/ICONE26-81570\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Digital instrumentation and control (I&C) systems are widely used in many industrial areas. In the recent years, the digitalization process for nuclear power plants has also been moving on rapidly. Full digital I&C systems are now adopted in almost all new constructed nuclear power plants. The architecture of a digital I&C system plays a pivotal role for the safety, reliability and security of the whole nuclear power plant. Moreover, for the advanced small modular reactors, both the reliability and extensibility of I&C systems are especially required.\\n Therefore, in this paper we propose a new architecture of the digital I&C systems based on the developed computing performance and communication technology. The control units and the data servers in the new proposed architecture are decentralized and working in a mutually redundant and distributed computing/storage way. Thus the architecture is with a flexible extensibility. Moreover, other control units or data servers can take over the functions of a certain number of failed ones. This characteristic benefits the system’s reliability significantly. The reliability of the new architecture is theoretically evaluated and the results demonstrate that it is much higher than that of the traditional architecture of I&C systems.\",\"PeriodicalId\":65607,\"journal\":{\"name\":\"International Journal of Plant Engineering and Management\",\"volume\":\"59 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Plant Engineering and Management\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.1115/ICONE26-81570\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Plant Engineering and Management","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1115/ICONE26-81570","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Novel More Reliable and Extensible Architecture of Instrumentation and Control Systems
Digital instrumentation and control (I&C) systems are widely used in many industrial areas. In the recent years, the digitalization process for nuclear power plants has also been moving on rapidly. Full digital I&C systems are now adopted in almost all new constructed nuclear power plants. The architecture of a digital I&C system plays a pivotal role for the safety, reliability and security of the whole nuclear power plant. Moreover, for the advanced small modular reactors, both the reliability and extensibility of I&C systems are especially required.
Therefore, in this paper we propose a new architecture of the digital I&C systems based on the developed computing performance and communication technology. The control units and the data servers in the new proposed architecture are decentralized and working in a mutually redundant and distributed computing/storage way. Thus the architecture is with a flexible extensibility. Moreover, other control units or data servers can take over the functions of a certain number of failed ones. This characteristic benefits the system’s reliability significantly. The reliability of the new architecture is theoretically evaluated and the results demonstrate that it is much higher than that of the traditional architecture of I&C systems.