关于模的经典素谱的一些注释

IF 0.5 Q3 MATHEMATICS
A. Abbasi, M. H. Naderi
{"title":"关于模的经典素谱的一些注释","authors":"A. Abbasi, M. H. Naderi","doi":"10.22190/FUMI191220002A","DOIUrl":null,"url":null,"abstract":"Let R be a commutative ring with identity and let M be an R-module. A proper submodule P of M is called a classical prime submodule if abm ∈ P, for a,b ∈ R, and m ∈ M, implies that am ∈ P or bm ∈ P. The classical prime spectrum of M, Cl.Spec(M), is defined to be the set of all classical prime submodules of M. We say M is classical primefule if M = 0, or the map ψ from Cl.Spec(M) to Spec(R/Ann(M)), defined by ψ(P) = (P : M)/Ann(M) for all P ∈ Cl.Spec(M), is surjective. In this paper, we study classical primeful modules as a generalisation of primeful modules. Also we investigate some properties of a topology that is defined on Cl.Spec(M), named the Zariski topology.","PeriodicalId":54148,"journal":{"name":"Facta Universitatis-Series Mathematics and Informatics","volume":"121 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SOME REMARKS ON THE CLASSICAL PRIME SPECTRUM OF MODULES\",\"authors\":\"A. Abbasi, M. H. Naderi\",\"doi\":\"10.22190/FUMI191220002A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let R be a commutative ring with identity and let M be an R-module. A proper submodule P of M is called a classical prime submodule if abm ∈ P, for a,b ∈ R, and m ∈ M, implies that am ∈ P or bm ∈ P. The classical prime spectrum of M, Cl.Spec(M), is defined to be the set of all classical prime submodules of M. We say M is classical primefule if M = 0, or the map ψ from Cl.Spec(M) to Spec(R/Ann(M)), defined by ψ(P) = (P : M)/Ann(M) for all P ∈ Cl.Spec(M), is surjective. In this paper, we study classical primeful modules as a generalisation of primeful modules. Also we investigate some properties of a topology that is defined on Cl.Spec(M), named the Zariski topology.\",\"PeriodicalId\":54148,\"journal\":{\"name\":\"Facta Universitatis-Series Mathematics and Informatics\",\"volume\":\"121 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Facta Universitatis-Series Mathematics and Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22190/FUMI191220002A\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Facta Universitatis-Series Mathematics and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22190/FUMI191220002A","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设R是一个有恒等的交换环,M是一个R模。适当的子模块P (M称为古典撇子模块如果反弹道导弹∈P, A, b∈R,和M∈M,意味着我∈P或者bm∈P . M的古典主要频谱Cl.Spec (M),定义的所有经典'子M . M是古典primefule如果M = 0,或者从Cl.Spec地图ψ(M)规范(R /安(M)),定义为ψ(P) = (P: M) /安所有P (M)∈Cl.Spec (M),是满射。本文将经典基模作为基模的推广来研究。我们还研究了定义在Cl.Spec(M)上的拓扑的一些性质,称为Zariski拓扑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SOME REMARKS ON THE CLASSICAL PRIME SPECTRUM OF MODULES
Let R be a commutative ring with identity and let M be an R-module. A proper submodule P of M is called a classical prime submodule if abm ∈ P, for a,b ∈ R, and m ∈ M, implies that am ∈ P or bm ∈ P. The classical prime spectrum of M, Cl.Spec(M), is defined to be the set of all classical prime submodules of M. We say M is classical primefule if M = 0, or the map ψ from Cl.Spec(M) to Spec(R/Ann(M)), defined by ψ(P) = (P : M)/Ann(M) for all P ∈ Cl.Spec(M), is surjective. In this paper, we study classical primeful modules as a generalisation of primeful modules. Also we investigate some properties of a topology that is defined on Cl.Spec(M), named the Zariski topology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
16
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信