{"title":"不同各向异性介质中的奇点、界面和裂缝","authors":"Z. Suo","doi":"10.1098/rspa.1990.0016","DOIUrl":null,"url":null,"abstract":"For a non-pathological bimaterial in which an interface crack displays no oscillatory behaviour, it is observed that, apart possibly from the stress intensity factors, the structure of the near-tip field in each of the two blocks is independent of the elastic moduli of the other block. Collinear interface cracks are analysed under this non-oscillatory condition, and a simple rule is formulated that allows one to construct the complete solutions from mode III solutions in an isotropic, homogeneous medium. The general interfacial crack-tip field is found to consist of a two-dimensional oscillatory singularity and a one-dimensional square root singularity. A complex and a real stress intensity factors are proposed to scale the two singularities respectively. Owing to anisotropy, a peculiar fact is that the complex stress intensity factor scaling the oscillatory fields, however defined, does not recover the classical stress intensity factors as the bimaterial degenerates to be non-pathological. Collinear crack problems are also formulated in this context, and a strikingly simple mathematical structure is identified. Interactive solutions for singularity-interface and singularity interface-crack are obtained. The general results are specialized to decoupled antiplane and in-plane deformations. For this important case, it is found that if a material pair is non-pathological for one set of relative orientations of the interface and the two solids, it is non-pathological for any set of orientations. For bonded orthotropic materials, an intuitive choice of the principal measures of elastic anisotropy and dissimilarity is rationalized. A complex-variable representation is presented for a class of degenerate orthotropic materials. Throughout the paper, the equivalence of the Lekhnitskii and Stroh formalisms is emphasized. The article concludes with a formal statement of interfacial fracture mechanics for anisotropic solids.","PeriodicalId":20605,"journal":{"name":"Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences","volume":"18 1","pages":"331 - 358"},"PeriodicalIF":0.0000,"publicationDate":"1990-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"705","resultStr":"{\"title\":\"Singularities, interfaces and cracks in dissimilar anisotropic media\",\"authors\":\"Z. Suo\",\"doi\":\"10.1098/rspa.1990.0016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a non-pathological bimaterial in which an interface crack displays no oscillatory behaviour, it is observed that, apart possibly from the stress intensity factors, the structure of the near-tip field in each of the two blocks is independent of the elastic moduli of the other block. Collinear interface cracks are analysed under this non-oscillatory condition, and a simple rule is formulated that allows one to construct the complete solutions from mode III solutions in an isotropic, homogeneous medium. The general interfacial crack-tip field is found to consist of a two-dimensional oscillatory singularity and a one-dimensional square root singularity. A complex and a real stress intensity factors are proposed to scale the two singularities respectively. Owing to anisotropy, a peculiar fact is that the complex stress intensity factor scaling the oscillatory fields, however defined, does not recover the classical stress intensity factors as the bimaterial degenerates to be non-pathological. Collinear crack problems are also formulated in this context, and a strikingly simple mathematical structure is identified. Interactive solutions for singularity-interface and singularity interface-crack are obtained. The general results are specialized to decoupled antiplane and in-plane deformations. For this important case, it is found that if a material pair is non-pathological for one set of relative orientations of the interface and the two solids, it is non-pathological for any set of orientations. For bonded orthotropic materials, an intuitive choice of the principal measures of elastic anisotropy and dissimilarity is rationalized. A complex-variable representation is presented for a class of degenerate orthotropic materials. Throughout the paper, the equivalence of the Lekhnitskii and Stroh formalisms is emphasized. The article concludes with a formal statement of interfacial fracture mechanics for anisotropic solids.\",\"PeriodicalId\":20605,\"journal\":{\"name\":\"Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences\",\"volume\":\"18 1\",\"pages\":\"331 - 358\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"705\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1098/rspa.1990.0016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1098/rspa.1990.0016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Singularities, interfaces and cracks in dissimilar anisotropic media
For a non-pathological bimaterial in which an interface crack displays no oscillatory behaviour, it is observed that, apart possibly from the stress intensity factors, the structure of the near-tip field in each of the two blocks is independent of the elastic moduli of the other block. Collinear interface cracks are analysed under this non-oscillatory condition, and a simple rule is formulated that allows one to construct the complete solutions from mode III solutions in an isotropic, homogeneous medium. The general interfacial crack-tip field is found to consist of a two-dimensional oscillatory singularity and a one-dimensional square root singularity. A complex and a real stress intensity factors are proposed to scale the two singularities respectively. Owing to anisotropy, a peculiar fact is that the complex stress intensity factor scaling the oscillatory fields, however defined, does not recover the classical stress intensity factors as the bimaterial degenerates to be non-pathological. Collinear crack problems are also formulated in this context, and a strikingly simple mathematical structure is identified. Interactive solutions for singularity-interface and singularity interface-crack are obtained. The general results are specialized to decoupled antiplane and in-plane deformations. For this important case, it is found that if a material pair is non-pathological for one set of relative orientations of the interface and the two solids, it is non-pathological for any set of orientations. For bonded orthotropic materials, an intuitive choice of the principal measures of elastic anisotropy and dissimilarity is rationalized. A complex-variable representation is presented for a class of degenerate orthotropic materials. Throughout the paper, the equivalence of the Lekhnitskii and Stroh formalisms is emphasized. The article concludes with a formal statement of interfacial fracture mechanics for anisotropic solids.