嵌入标准分解

Q4 Mathematics
I. Agol, M. Freedman
{"title":"嵌入标准分解","authors":"I. Agol, M. Freedman","doi":"10.53733/189","DOIUrl":null,"url":null,"abstract":"A smooth embedding of a closed $3$-manifold $M$ in $\\mathbb{R}^4$ may generically be composed with projection to the fourth coordinate to determine a Morse function on $M$ and hence a Heegaard splitting $M=X\\cup_\\Sigma Y$.  However, starting with a Heegaard splitting, we find an obstruction coming from the geometry of the curve complex $C(\\Sigma)$ to realizing a corresponding embedding $M\\hookrightarrow \\mathbb{R}^4$.","PeriodicalId":30137,"journal":{"name":"New Zealand Journal of Mathematics","volume":"55 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Embedding Heegaard Decompositions\",\"authors\":\"I. Agol, M. Freedman\",\"doi\":\"10.53733/189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A smooth embedding of a closed $3$-manifold $M$ in $\\\\mathbb{R}^4$ may generically be composed with projection to the fourth coordinate to determine a Morse function on $M$ and hence a Heegaard splitting $M=X\\\\cup_\\\\Sigma Y$.  However, starting with a Heegaard splitting, we find an obstruction coming from the geometry of the curve complex $C(\\\\Sigma)$ to realizing a corresponding embedding $M\\\\hookrightarrow \\\\mathbb{R}^4$.\",\"PeriodicalId\":30137,\"journal\":{\"name\":\"New Zealand Journal of Mathematics\",\"volume\":\"55 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Zealand Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.53733/189\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Zealand Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53733/189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

摘要

一个封闭的$3$ -流形$M$在$\mathbb{R}^4$中的平滑嵌入一般可以由到第四个坐标的投影组成,以确定$M$上的莫尔斯函数,从而确定heegard分裂$M=X\cup_\Sigma Y$。然而,从Heegaard分裂开始,我们发现一个来自曲线复合体几何形状$C(\Sigma)$的障碍物来实现相应的嵌入$M\hookrightarrow \mathbb{R}^4$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Embedding Heegaard Decompositions
A smooth embedding of a closed $3$-manifold $M$ in $\mathbb{R}^4$ may generically be composed with projection to the fourth coordinate to determine a Morse function on $M$ and hence a Heegaard splitting $M=X\cup_\Sigma Y$.  However, starting with a Heegaard splitting, we find an obstruction coming from the geometry of the curve complex $C(\Sigma)$ to realizing a corresponding embedding $M\hookrightarrow \mathbb{R}^4$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
New Zealand Journal of Mathematics
New Zealand Journal of Mathematics Mathematics-Algebra and Number Theory
CiteScore
1.10
自引率
0.00%
发文量
11
审稿时长
50 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信