{"title":"嵌入标准分解","authors":"I. Agol, M. Freedman","doi":"10.53733/189","DOIUrl":null,"url":null,"abstract":"A smooth embedding of a closed $3$-manifold $M$ in $\\mathbb{R}^4$ may generically be composed with projection to the fourth coordinate to determine a Morse function on $M$ and hence a Heegaard splitting $M=X\\cup_\\Sigma Y$. However, starting with a Heegaard splitting, we find an obstruction coming from the geometry of the curve complex $C(\\Sigma)$ to realizing a corresponding embedding $M\\hookrightarrow \\mathbb{R}^4$.","PeriodicalId":30137,"journal":{"name":"New Zealand Journal of Mathematics","volume":"55 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Embedding Heegaard Decompositions\",\"authors\":\"I. Agol, M. Freedman\",\"doi\":\"10.53733/189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A smooth embedding of a closed $3$-manifold $M$ in $\\\\mathbb{R}^4$ may generically be composed with projection to the fourth coordinate to determine a Morse function on $M$ and hence a Heegaard splitting $M=X\\\\cup_\\\\Sigma Y$. However, starting with a Heegaard splitting, we find an obstruction coming from the geometry of the curve complex $C(\\\\Sigma)$ to realizing a corresponding embedding $M\\\\hookrightarrow \\\\mathbb{R}^4$.\",\"PeriodicalId\":30137,\"journal\":{\"name\":\"New Zealand Journal of Mathematics\",\"volume\":\"55 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Zealand Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.53733/189\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Zealand Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53733/189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
A smooth embedding of a closed $3$-manifold $M$ in $\mathbb{R}^4$ may generically be composed with projection to the fourth coordinate to determine a Morse function on $M$ and hence a Heegaard splitting $M=X\cup_\Sigma Y$. However, starting with a Heegaard splitting, we find an obstruction coming from the geometry of the curve complex $C(\Sigma)$ to realizing a corresponding embedding $M\hookrightarrow \mathbb{R}^4$.