R. Francey, R. Francey, C. Allison, D. Etheridge, C. Trudinger, C. Trudinger, I. Enting, I. Enting, M. Leuenberger, R. Langenfelds, E. Michel, L. Steele, L. Steele
{"title":"大气co2中δ 13c的1000年高精度记录","authors":"R. Francey, R. Francey, C. Allison, D. Etheridge, C. Trudinger, C. Trudinger, I. Enting, I. Enting, M. Leuenberger, R. Langenfelds, E. Michel, L. Steele, L. Steele","doi":"10.3402/TELLUSB.V51I2.16269","DOIUrl":null,"url":null,"abstract":"We present measurements of the stable carbon isotope ratio in air extracted from Antarctic ice core and firn samples. The same samples were previously used by Etheridge and co-workers to construct a high precision 1000-year record of atmospheric CO 2 concentration, featuring a close link between the ice and modern records and high-time resolution. Here, we start by confirming the trend in the Cape Grim in situ δ 13 C record from 1982 to 1996, and extend it back to 1978 using the Cape Grim Air Archive. The firn air δ 13 C agrees with the Cape Grim record, but only after correction for gravitational separation at depth, for diffusion effects associated with disequilibrium between the atmosphere and firm, and allowance for a latidudinal gradient in δ 13 C between Cape Grim and the Antarctic coast. Complex calibration strategies are required to cope with several additional systematic influences on the ice core δ 13 C record. Errors are assigned to each ice core value to reflect statistical and systematic biases (between ± 0.025‰ and ± 0.07‰); uncertainties (of up to ± 0.05‰) between core-versus-core, ice-versus-firn and firn-versus-troposphere are described separately. An almost continuous atmospheric history of δ 13 C over 1000 years results, exhibiting significant decadal-to-century scale variability unlike that from earlier proxy records. The decrease in δ 13 C from 1860 to 1960 involves a series of steps confirming enhanced sensitivity of δ 13 C to decadal timescale-forcing, compared to the CO 2 record. Synchronous with a ‘‘Little Ice Age’′ CO 2 decrease, an enhancement of δ 13 C implies a terrestrial response to cooler temperatures. Between 1200 AD and 1600 AD, the atmospheric δ 13 C appear stable. DOI: 10.1034/j.1600-0889.1999.t01-1-00005.x","PeriodicalId":54432,"journal":{"name":"Tellus Series B-Chemical and Physical Meteorology","volume":"118 1","pages":"170-193"},"PeriodicalIF":2.3000,"publicationDate":"1999-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"750","resultStr":"{\"title\":\"A 1000-year high precision record of δ 13 C in atmospheric CO 2\",\"authors\":\"R. Francey, R. Francey, C. Allison, D. Etheridge, C. Trudinger, C. Trudinger, I. Enting, I. Enting, M. Leuenberger, R. Langenfelds, E. Michel, L. Steele, L. Steele\",\"doi\":\"10.3402/TELLUSB.V51I2.16269\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present measurements of the stable carbon isotope ratio in air extracted from Antarctic ice core and firn samples. The same samples were previously used by Etheridge and co-workers to construct a high precision 1000-year record of atmospheric CO 2 concentration, featuring a close link between the ice and modern records and high-time resolution. Here, we start by confirming the trend in the Cape Grim in situ δ 13 C record from 1982 to 1996, and extend it back to 1978 using the Cape Grim Air Archive. The firn air δ 13 C agrees with the Cape Grim record, but only after correction for gravitational separation at depth, for diffusion effects associated with disequilibrium between the atmosphere and firm, and allowance for a latidudinal gradient in δ 13 C between Cape Grim and the Antarctic coast. Complex calibration strategies are required to cope with several additional systematic influences on the ice core δ 13 C record. Errors are assigned to each ice core value to reflect statistical and systematic biases (between ± 0.025‰ and ± 0.07‰); uncertainties (of up to ± 0.05‰) between core-versus-core, ice-versus-firn and firn-versus-troposphere are described separately. An almost continuous atmospheric history of δ 13 C over 1000 years results, exhibiting significant decadal-to-century scale variability unlike that from earlier proxy records. The decrease in δ 13 C from 1860 to 1960 involves a series of steps confirming enhanced sensitivity of δ 13 C to decadal timescale-forcing, compared to the CO 2 record. Synchronous with a ‘‘Little Ice Age’′ CO 2 decrease, an enhancement of δ 13 C implies a terrestrial response to cooler temperatures. Between 1200 AD and 1600 AD, the atmospheric δ 13 C appear stable. DOI: 10.1034/j.1600-0889.1999.t01-1-00005.x\",\"PeriodicalId\":54432,\"journal\":{\"name\":\"Tellus Series B-Chemical and Physical Meteorology\",\"volume\":\"118 1\",\"pages\":\"170-193\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"1999-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"750\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tellus Series B-Chemical and Physical Meteorology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.3402/TELLUSB.V51I2.16269\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tellus Series B-Chemical and Physical Meteorology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3402/TELLUSB.V51I2.16269","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
A 1000-year high precision record of δ 13 C in atmospheric CO 2
We present measurements of the stable carbon isotope ratio in air extracted from Antarctic ice core and firn samples. The same samples were previously used by Etheridge and co-workers to construct a high precision 1000-year record of atmospheric CO 2 concentration, featuring a close link between the ice and modern records and high-time resolution. Here, we start by confirming the trend in the Cape Grim in situ δ 13 C record from 1982 to 1996, and extend it back to 1978 using the Cape Grim Air Archive. The firn air δ 13 C agrees with the Cape Grim record, but only after correction for gravitational separation at depth, for diffusion effects associated with disequilibrium between the atmosphere and firm, and allowance for a latidudinal gradient in δ 13 C between Cape Grim and the Antarctic coast. Complex calibration strategies are required to cope with several additional systematic influences on the ice core δ 13 C record. Errors are assigned to each ice core value to reflect statistical and systematic biases (between ± 0.025‰ and ± 0.07‰); uncertainties (of up to ± 0.05‰) between core-versus-core, ice-versus-firn and firn-versus-troposphere are described separately. An almost continuous atmospheric history of δ 13 C over 1000 years results, exhibiting significant decadal-to-century scale variability unlike that from earlier proxy records. The decrease in δ 13 C from 1860 to 1960 involves a series of steps confirming enhanced sensitivity of δ 13 C to decadal timescale-forcing, compared to the CO 2 record. Synchronous with a ‘‘Little Ice Age’′ CO 2 decrease, an enhancement of δ 13 C implies a terrestrial response to cooler temperatures. Between 1200 AD and 1600 AD, the atmospheric δ 13 C appear stable. DOI: 10.1034/j.1600-0889.1999.t01-1-00005.x
期刊介绍:
Tellus B: Chemical and Physical Meteorology along with its sister journal Tellus A: Dynamic Meteorology and Oceanography, are the international, peer-reviewed journals of the International Meteorological Institute in Stockholm, an independent non-for-profit body integrated into the Department of Meteorology at the Faculty of Sciences of Stockholm University, Sweden. Aiming to promote the exchange of knowledge about meteorology from across a range of scientific sub-disciplines, the two journals serve an international community of researchers, policy makers, managers, media and the general public.