{"title":"个性化移动身体活动识别","authors":"Attila Reiss, D. Stricker","doi":"10.1145/2493988.2494349","DOIUrl":null,"url":null,"abstract":"Personalization of activity recognition has become a topic of interest recently. This paper presents a novel concept, using a set of classifiers as general model, and retraining only the weight of the classifiers with new labeled data from a previously unknown subject. Experiments with different methods based on this concept show that it is a valid approach for personalization. An important benefit of the proposed concept is its low computational cost compared to other approaches, making it also feasible for mobile applications. Moreover, more advanced classifiers (e.g. boosted decision trees) can be combined with the new concept, to achieve good performance even on complex classification tasks. Finally, a new algorithm is introduced based on the proposed concept, which outperforms existing methods, thus further increasing the performance of personalized applications.","PeriodicalId":90988,"journal":{"name":"The semantic Web--ISWC ... : ... International Semantic Web Conference ... proceedings. International Semantic Web Conference","volume":"48 1","pages":"25-28"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"50","resultStr":"{\"title\":\"Personalized mobile physical activity recognition\",\"authors\":\"Attila Reiss, D. Stricker\",\"doi\":\"10.1145/2493988.2494349\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Personalization of activity recognition has become a topic of interest recently. This paper presents a novel concept, using a set of classifiers as general model, and retraining only the weight of the classifiers with new labeled data from a previously unknown subject. Experiments with different methods based on this concept show that it is a valid approach for personalization. An important benefit of the proposed concept is its low computational cost compared to other approaches, making it also feasible for mobile applications. Moreover, more advanced classifiers (e.g. boosted decision trees) can be combined with the new concept, to achieve good performance even on complex classification tasks. Finally, a new algorithm is introduced based on the proposed concept, which outperforms existing methods, thus further increasing the performance of personalized applications.\",\"PeriodicalId\":90988,\"journal\":{\"name\":\"The semantic Web--ISWC ... : ... International Semantic Web Conference ... proceedings. International Semantic Web Conference\",\"volume\":\"48 1\",\"pages\":\"25-28\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"50\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The semantic Web--ISWC ... : ... International Semantic Web Conference ... proceedings. International Semantic Web Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2493988.2494349\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The semantic Web--ISWC ... : ... International Semantic Web Conference ... proceedings. International Semantic Web Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2493988.2494349","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Personalization of activity recognition has become a topic of interest recently. This paper presents a novel concept, using a set of classifiers as general model, and retraining only the weight of the classifiers with new labeled data from a previously unknown subject. Experiments with different methods based on this concept show that it is a valid approach for personalization. An important benefit of the proposed concept is its low computational cost compared to other approaches, making it also feasible for mobile applications. Moreover, more advanced classifiers (e.g. boosted decision trees) can be combined with the new concept, to achieve good performance even on complex classification tasks. Finally, a new algorithm is introduced based on the proposed concept, which outperforms existing methods, thus further increasing the performance of personalized applications.