海森堡群宇宙理论的公理化

IF 0.1 Q4 MATHEMATICS
A. Gaglione, D. Spellman
{"title":"海森堡群宇宙理论的公理化","authors":"A. Gaglione, D. Spellman","doi":"10.46298/jgcc.2023..12200","DOIUrl":null,"url":null,"abstract":"The Heisenberg group, here denoted $H$, is the group of all $3\\times 3$ upper\nunitriangular matrices with entries in the ring $\\mathbb{Z}$ of integers. A.G.\nMyasnikov posed the question of whether or not the universal theory of $H$, in\nthe language of $H$, is axiomatized, when the models are restricted to\n$H$-groups, by the quasi-identities true in $H$ together with the assertion\nthat the centralizers of noncentral elements be abelian. Based on earlier\npublished partial results we here give a complete proof of a slightly stronger\nresult.","PeriodicalId":41862,"journal":{"name":"Groups Complexity Cryptology","volume":"28 1","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An axiomatization for the universal theory of the Heisenberg group\",\"authors\":\"A. Gaglione, D. Spellman\",\"doi\":\"10.46298/jgcc.2023..12200\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Heisenberg group, here denoted $H$, is the group of all $3\\\\times 3$ upper\\nunitriangular matrices with entries in the ring $\\\\mathbb{Z}$ of integers. A.G.\\nMyasnikov posed the question of whether or not the universal theory of $H$, in\\nthe language of $H$, is axiomatized, when the models are restricted to\\n$H$-groups, by the quasi-identities true in $H$ together with the assertion\\nthat the centralizers of noncentral elements be abelian. Based on earlier\\npublished partial results we here give a complete proof of a slightly stronger\\nresult.\",\"PeriodicalId\":41862,\"journal\":{\"name\":\"Groups Complexity Cryptology\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2023-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Groups Complexity Cryptology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46298/jgcc.2023..12200\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Groups Complexity Cryptology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/jgcc.2023..12200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

Heisenberg群,这里记作$H$,是所有$3\乘以3$上酉三角形矩阵的群,这些矩阵的元在环$\mathbb{Z}$中。A.G.Myasnikov用H$的语言提出了一个问题:当模型被限定为H$-群时,H$的准恒等式和非中心元素的中心中心是阿贝尔的命题是否公化了H$的全称理论。在先前发表的部分结果的基础上,我们给出了一个稍强的结果的完整证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An axiomatization for the universal theory of the Heisenberg group
The Heisenberg group, here denoted $H$, is the group of all $3\times 3$ upper unitriangular matrices with entries in the ring $\mathbb{Z}$ of integers. A.G. Myasnikov posed the question of whether or not the universal theory of $H$, in the language of $H$, is axiomatized, when the models are restricted to $H$-groups, by the quasi-identities true in $H$ together with the assertion that the centralizers of noncentral elements be abelian. Based on earlier published partial results we here give a complete proof of a slightly stronger result.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信