{"title":"分数差和定义的复习","authors":"Qiushuang Wang, R. Xu","doi":"10.3934/mfc.2022013","DOIUrl":null,"url":null,"abstract":"Given the increasing importance of discrete fractional calculus in mathematics, science engineering and so on, many different concepts of fractional difference and sum operators have been defined. In this paper, we mainly reviews some definitions of fractional differences and sum operators that emerged in the fields of discrete calculus. Moreover, some properties of those operators are also analyzed and compared with each other, including commutation rules, linearity, Leibniz rules, etc.","PeriodicalId":93334,"journal":{"name":"Mathematical foundations of computing","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A review of definitions of fractional differences and sums\",\"authors\":\"Qiushuang Wang, R. Xu\",\"doi\":\"10.3934/mfc.2022013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given the increasing importance of discrete fractional calculus in mathematics, science engineering and so on, many different concepts of fractional difference and sum operators have been defined. In this paper, we mainly reviews some definitions of fractional differences and sum operators that emerged in the fields of discrete calculus. Moreover, some properties of those operators are also analyzed and compared with each other, including commutation rules, linearity, Leibniz rules, etc.\",\"PeriodicalId\":93334,\"journal\":{\"name\":\"Mathematical foundations of computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical foundations of computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/mfc.2022013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical foundations of computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/mfc.2022013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
A review of definitions of fractional differences and sums
Given the increasing importance of discrete fractional calculus in mathematics, science engineering and so on, many different concepts of fractional difference and sum operators have been defined. In this paper, we mainly reviews some definitions of fractional differences and sum operators that emerged in the fields of discrete calculus. Moreover, some properties of those operators are also analyzed and compared with each other, including commutation rules, linearity, Leibniz rules, etc.