A. Donnellan, J. Parker, R. Granat, E. D. De Jong, S. Suzuki, M. Pierce, G. Fox, J. Rundle, D. McLeod, R. Al-Ghanmi, L. G. Ludwig
{"title":"QuakeSim:综合建模和分析地质和遥感数据","authors":"A. Donnellan, J. Parker, R. Granat, E. D. De Jong, S. Suzuki, M. Pierce, G. Fox, J. Rundle, D. McLeod, R. Al-Ghanmi, L. G. Ludwig","doi":"10.1109/AERO.2012.6187219","DOIUrl":null,"url":null,"abstract":"The QuakeSim Project improves understanding of earthquake processes by integrating model applications and various heterogeneous data sources within a web services environment. The project focuses on the earthquake cycle and related crustal deformation. Spaceborne GPS and Interferometric Synthetic Aperture data provide information on near-term crustal deformation, while paleoseismic geologic data provide longer-term information on earthquake fault processes. These data sources are integrated into QuakeSim's QuakeTables database and are accessible by users or various model applications. An increasing amount of UAVSAR data is being added to the QuakeTables database through a map browsable interface. Model applications can retrieve data from QuakeTables or remotely served GPS velocity data services or users can manually input parameters into the models. Pattern analysis of GPS and seismicity data has proved useful for mid-term forecasting of earthquakes and for detecting subtle changes in crustal deformation. The GPS time series analysis has also proved useful for detecting changes in processing of the data. Development of the QuakeSim computational infrastructure has benefitted greatly from having the user in the development loop. Improved visualization tools enable more efficient data exploration and understanding. Tools must provide flexibility to science users for exploring data in new ways, but also must facilitate standard, intuitive, and routine uses for end users such as emergency responders.","PeriodicalId":6421,"journal":{"name":"2012 IEEE Aerospace Conference","volume":"1 1","pages":"1-9"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"QuakeSim: Integrated modeling and analysis of geologic and remotely sensed data\",\"authors\":\"A. Donnellan, J. Parker, R. Granat, E. D. De Jong, S. Suzuki, M. Pierce, G. Fox, J. Rundle, D. McLeod, R. Al-Ghanmi, L. G. Ludwig\",\"doi\":\"10.1109/AERO.2012.6187219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The QuakeSim Project improves understanding of earthquake processes by integrating model applications and various heterogeneous data sources within a web services environment. The project focuses on the earthquake cycle and related crustal deformation. Spaceborne GPS and Interferometric Synthetic Aperture data provide information on near-term crustal deformation, while paleoseismic geologic data provide longer-term information on earthquake fault processes. These data sources are integrated into QuakeSim's QuakeTables database and are accessible by users or various model applications. An increasing amount of UAVSAR data is being added to the QuakeTables database through a map browsable interface. Model applications can retrieve data from QuakeTables or remotely served GPS velocity data services or users can manually input parameters into the models. Pattern analysis of GPS and seismicity data has proved useful for mid-term forecasting of earthquakes and for detecting subtle changes in crustal deformation. The GPS time series analysis has also proved useful for detecting changes in processing of the data. Development of the QuakeSim computational infrastructure has benefitted greatly from having the user in the development loop. Improved visualization tools enable more efficient data exploration and understanding. Tools must provide flexibility to science users for exploring data in new ways, but also must facilitate standard, intuitive, and routine uses for end users such as emergency responders.\",\"PeriodicalId\":6421,\"journal\":{\"name\":\"2012 IEEE Aerospace Conference\",\"volume\":\"1 1\",\"pages\":\"1-9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE Aerospace Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AERO.2012.6187219\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Aerospace Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AERO.2012.6187219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
QuakeSim: Integrated modeling and analysis of geologic and remotely sensed data
The QuakeSim Project improves understanding of earthquake processes by integrating model applications and various heterogeneous data sources within a web services environment. The project focuses on the earthquake cycle and related crustal deformation. Spaceborne GPS and Interferometric Synthetic Aperture data provide information on near-term crustal deformation, while paleoseismic geologic data provide longer-term information on earthquake fault processes. These data sources are integrated into QuakeSim's QuakeTables database and are accessible by users or various model applications. An increasing amount of UAVSAR data is being added to the QuakeTables database through a map browsable interface. Model applications can retrieve data from QuakeTables or remotely served GPS velocity data services or users can manually input parameters into the models. Pattern analysis of GPS and seismicity data has proved useful for mid-term forecasting of earthquakes and for detecting subtle changes in crustal deformation. The GPS time series analysis has also proved useful for detecting changes in processing of the data. Development of the QuakeSim computational infrastructure has benefitted greatly from having the user in the development loop. Improved visualization tools enable more efficient data exploration and understanding. Tools must provide flexibility to science users for exploring data in new ways, but also must facilitate standard, intuitive, and routine uses for end users such as emergency responders.