基于模糊规则的磷虾群算法

Fang Su, Wenzhe Yang, C. Duan, Jilong Li
{"title":"基于模糊规则的磷虾群算法","authors":"Fang Su, Wenzhe Yang, C. Duan, Jilong Li","doi":"10.1109/ICCC47050.2019.9064372","DOIUrl":null,"url":null,"abstract":"Standard Krill Herd (SKH) optimization algorithm is a novel heuristic optimization algorithm, and its control parameters play an important role for its performance. In this paper, an improved Krill Herd algorithm is proposed, in which the fuzzy system is utilized as the parameter tuner to adjust control parameters by observing the progress of solving the problem in each step. The innovation is that both scaling factor and inertia weight are considered, and these parameters can be adjusted automatically according to the particle situation. In order to evaluate the proposed FKH algorithm, the efficiency of FKH algorithm is verified by using 16 benchmark functions, the results indicate the superiority of proposed FKH optimization algorithm in comparison with the standard KH.","PeriodicalId":6739,"journal":{"name":"2019 IEEE 5th International Conference on Computer and Communications (ICCC)","volume":"91 8 1","pages":"61-65"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Fuzzy Rule-Based Krill Herd Algorithm\",\"authors\":\"Fang Su, Wenzhe Yang, C. Duan, Jilong Li\",\"doi\":\"10.1109/ICCC47050.2019.9064372\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Standard Krill Herd (SKH) optimization algorithm is a novel heuristic optimization algorithm, and its control parameters play an important role for its performance. In this paper, an improved Krill Herd algorithm is proposed, in which the fuzzy system is utilized as the parameter tuner to adjust control parameters by observing the progress of solving the problem in each step. The innovation is that both scaling factor and inertia weight are considered, and these parameters can be adjusted automatically according to the particle situation. In order to evaluate the proposed FKH algorithm, the efficiency of FKH algorithm is verified by using 16 benchmark functions, the results indicate the superiority of proposed FKH optimization algorithm in comparison with the standard KH.\",\"PeriodicalId\":6739,\"journal\":{\"name\":\"2019 IEEE 5th International Conference on Computer and Communications (ICCC)\",\"volume\":\"91 8 1\",\"pages\":\"61-65\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 5th International Conference on Computer and Communications (ICCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCC47050.2019.9064372\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 5th International Conference on Computer and Communications (ICCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCC47050.2019.9064372","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

标准磷虾群(Standard Krill Herd, SKH)优化算法是一种新型的启发式优化算法,其控制参数对其性能起着重要作用。本文提出了一种改进的Krill Herd算法,该算法利用模糊系统作为参数调谐器,通过观察每一步问题的求解进度来调整控制参数。该方法的创新之处在于同时考虑了比例因子和惯性权重,并可根据粒子情况自动调整这些参数。为了评价提出的FKH算法,利用16个基准函数验证了FKH算法的效率,结果表明,与标准KH相比,提出的FKH优化算法具有优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Fuzzy Rule-Based Krill Herd Algorithm
Standard Krill Herd (SKH) optimization algorithm is a novel heuristic optimization algorithm, and its control parameters play an important role for its performance. In this paper, an improved Krill Herd algorithm is proposed, in which the fuzzy system is utilized as the parameter tuner to adjust control parameters by observing the progress of solving the problem in each step. The innovation is that both scaling factor and inertia weight are considered, and these parameters can be adjusted automatically according to the particle situation. In order to evaluate the proposed FKH algorithm, the efficiency of FKH algorithm is verified by using 16 benchmark functions, the results indicate the superiority of proposed FKH optimization algorithm in comparison with the standard KH.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信