在政治辩论中检测值得检查语句的多分类器系统

Ayush Patwari, Dan Goldwasser, S. Bagchi
{"title":"在政治辩论中检测值得检查语句的多分类器系统","authors":"Ayush Patwari, Dan Goldwasser, S. Bagchi","doi":"10.1145/3132847.3133150","DOIUrl":null,"url":null,"abstract":"Fact-checking political discussions has become an essential clog in computational journalism. This task encompasses an important sub-task---identifying the set of statements with 'check-worthy' claims. Previous work has treated this as a simple text classification problem discounting the nuances involved in determining what makes statements check-worthy. We introduce a dataset of political debates from the 2016 US Presidential election campaign annotated using all major fact-checking media outlets and show that there is a need to model conversation context, debate dynamics and implicit world knowledge. We design a multi-classifier system TATHYA, that models latent groupings in data and improves state-of-art systems in detecting check-worthy statements by 19.5% in F1-score on a held-out test set, gaining primarily gaining in Recall.","PeriodicalId":20449,"journal":{"name":"Proceedings of the 2017 ACM on Conference on Information and Knowledge Management","volume":"110 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"65","resultStr":"{\"title\":\"TATHYA: A Multi-Classifier System for Detecting Check-Worthy Statements in Political Debates\",\"authors\":\"Ayush Patwari, Dan Goldwasser, S. Bagchi\",\"doi\":\"10.1145/3132847.3133150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fact-checking political discussions has become an essential clog in computational journalism. This task encompasses an important sub-task---identifying the set of statements with 'check-worthy' claims. Previous work has treated this as a simple text classification problem discounting the nuances involved in determining what makes statements check-worthy. We introduce a dataset of political debates from the 2016 US Presidential election campaign annotated using all major fact-checking media outlets and show that there is a need to model conversation context, debate dynamics and implicit world knowledge. We design a multi-classifier system TATHYA, that models latent groupings in data and improves state-of-art systems in detecting check-worthy statements by 19.5% in F1-score on a held-out test set, gaining primarily gaining in Recall.\",\"PeriodicalId\":20449,\"journal\":{\"name\":\"Proceedings of the 2017 ACM on Conference on Information and Knowledge Management\",\"volume\":\"110 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"65\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2017 ACM on Conference on Information and Knowledge Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3132847.3133150\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 ACM on Conference on Information and Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3132847.3133150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 65

摘要

对政治讨论进行事实核查已经成为计算新闻的一个重要障碍。此任务包含一个重要的子任务——识别具有“值得检查”声明的语句集。以前的工作将其视为一个简单的文本分类问题,忽略了决定什么使语句值得检查所涉及的细微差别。我们引入了2016年美国总统竞选的政治辩论数据集,使用所有主要的事实核查媒体进行注释,并表明有必要对对话背景、辩论动态和隐含的世界知识进行建模。我们设计了一个多分类器系统TATHYA,该系统对数据中的潜在分组进行建模,并将当前最先进的系统在检测值得检查的语句方面提高了19.5%,在hold - hold测试集中的f1得分提高了19.5%,主要是在召回率上提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
TATHYA: A Multi-Classifier System for Detecting Check-Worthy Statements in Political Debates
Fact-checking political discussions has become an essential clog in computational journalism. This task encompasses an important sub-task---identifying the set of statements with 'check-worthy' claims. Previous work has treated this as a simple text classification problem discounting the nuances involved in determining what makes statements check-worthy. We introduce a dataset of political debates from the 2016 US Presidential election campaign annotated using all major fact-checking media outlets and show that there is a need to model conversation context, debate dynamics and implicit world knowledge. We design a multi-classifier system TATHYA, that models latent groupings in data and improves state-of-art systems in detecting check-worthy statements by 19.5% in F1-score on a held-out test set, gaining primarily gaining in Recall.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信