{"title":"单质粉末原料对SHS法制备ti3alc2 max相多孔框架形成的影响","authors":"D. Davydov, E. Umerov, E. I. Latukhin, A. Amosov","doi":"10.18323/2073-5073-2021-3-37-47","DOIUrl":null,"url":null,"abstract":"The ternary carbide compound Ti3AlC2 belongs to the so-called MAX-phases – a new type of ceramic materials with unique properties. A simple energy-saving method of self-propagating high-temperature synthesis (SHS) based on combustion is one of the promising methods for the production of this MAX-phase. The application of the SHS technology is to produce a Ti3AlC2 MAX-phase porous frame with the homogeneous porous structure without such defects as large pores, laminations, and cracks is of great interest. The paper investigates the possibility of producing such a porous frame with the maximum content of the Ti3AlC2 MAX-phase using powders of Ti, Al, and C elements of various grades different in particle sizes and carbon forms (soot or graphite) as initial components. Porous frame samples were produced by the open-air burning of pressed briquettes of charge of the initial powders of the selected grades without applying external pressure. The authors studied the macro- and microstructure of the obtained samples, their density, and phase composition. The study shows that using the finest titanium and carbon powders leads to the excessively active combustion with gas evolution and the synthesis of the defective porous samples with the charge briquette shape distortion, large pores, laminations, and cracks. Besides the titanium carbide by-phase, the highest values for the MAX-phase amount in the SHS-product were obtained using the titanium powder of the largest-size fraction together with the graphite powder, rather than soot. The excess aluminum powder addition to the stoichiometric ratio to the initial charge leads to an increase in the MAX-phase amount in the SHS product, compensating for the loss of aluminum due to evaporation. An increase in the sample volume (scale factor) also leads to an increase in the MAX-phase amount in the SHS product due to the slower cooling of the product after the reaction.","PeriodicalId":23555,"journal":{"name":"Vektor nauki Tol'yattinskogo gosudarstvennogo universiteta","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"THE INFLUENCE OF ELEMENTAL POWDER RAW MATERIAL ON THE FORMATION OF THE POROUS FRAME OF TI3ALC2 MAX-PHASE WHEN OBTAINING BY THE SHS METHOD\",\"authors\":\"D. Davydov, E. Umerov, E. I. Latukhin, A. Amosov\",\"doi\":\"10.18323/2073-5073-2021-3-37-47\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ternary carbide compound Ti3AlC2 belongs to the so-called MAX-phases – a new type of ceramic materials with unique properties. A simple energy-saving method of self-propagating high-temperature synthesis (SHS) based on combustion is one of the promising methods for the production of this MAX-phase. The application of the SHS technology is to produce a Ti3AlC2 MAX-phase porous frame with the homogeneous porous structure without such defects as large pores, laminations, and cracks is of great interest. The paper investigates the possibility of producing such a porous frame with the maximum content of the Ti3AlC2 MAX-phase using powders of Ti, Al, and C elements of various grades different in particle sizes and carbon forms (soot or graphite) as initial components. Porous frame samples were produced by the open-air burning of pressed briquettes of charge of the initial powders of the selected grades without applying external pressure. The authors studied the macro- and microstructure of the obtained samples, their density, and phase composition. The study shows that using the finest titanium and carbon powders leads to the excessively active combustion with gas evolution and the synthesis of the defective porous samples with the charge briquette shape distortion, large pores, laminations, and cracks. Besides the titanium carbide by-phase, the highest values for the MAX-phase amount in the SHS-product were obtained using the titanium powder of the largest-size fraction together with the graphite powder, rather than soot. The excess aluminum powder addition to the stoichiometric ratio to the initial charge leads to an increase in the MAX-phase amount in the SHS product, compensating for the loss of aluminum due to evaporation. An increase in the sample volume (scale factor) also leads to an increase in the MAX-phase amount in the SHS product due to the slower cooling of the product after the reaction.\",\"PeriodicalId\":23555,\"journal\":{\"name\":\"Vektor nauki Tol'yattinskogo gosudarstvennogo universiteta\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vektor nauki Tol'yattinskogo gosudarstvennogo universiteta\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18323/2073-5073-2021-3-37-47\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vektor nauki Tol'yattinskogo gosudarstvennogo universiteta","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18323/2073-5073-2021-3-37-47","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
THE INFLUENCE OF ELEMENTAL POWDER RAW MATERIAL ON THE FORMATION OF THE POROUS FRAME OF TI3ALC2 MAX-PHASE WHEN OBTAINING BY THE SHS METHOD
The ternary carbide compound Ti3AlC2 belongs to the so-called MAX-phases – a new type of ceramic materials with unique properties. A simple energy-saving method of self-propagating high-temperature synthesis (SHS) based on combustion is one of the promising methods for the production of this MAX-phase. The application of the SHS technology is to produce a Ti3AlC2 MAX-phase porous frame with the homogeneous porous structure without such defects as large pores, laminations, and cracks is of great interest. The paper investigates the possibility of producing such a porous frame with the maximum content of the Ti3AlC2 MAX-phase using powders of Ti, Al, and C elements of various grades different in particle sizes and carbon forms (soot or graphite) as initial components. Porous frame samples were produced by the open-air burning of pressed briquettes of charge of the initial powders of the selected grades without applying external pressure. The authors studied the macro- and microstructure of the obtained samples, their density, and phase composition. The study shows that using the finest titanium and carbon powders leads to the excessively active combustion with gas evolution and the synthesis of the defective porous samples with the charge briquette shape distortion, large pores, laminations, and cracks. Besides the titanium carbide by-phase, the highest values for the MAX-phase amount in the SHS-product were obtained using the titanium powder of the largest-size fraction together with the graphite powder, rather than soot. The excess aluminum powder addition to the stoichiometric ratio to the initial charge leads to an increase in the MAX-phase amount in the SHS product, compensating for the loss of aluminum due to evaporation. An increase in the sample volume (scale factor) also leads to an increase in the MAX-phase amount in the SHS product due to the slower cooling of the product after the reaction.