用神经网络方法优化树脂浸渍纸特高压直流壁套分级环

Chenyu Zhao, Zongren Peng, Peng Liu, Naiyi Li, Shuo Wang
{"title":"用神经网络方法优化树脂浸渍纸特高压直流壁套分级环","authors":"Chenyu Zhao, Zongren Peng, Peng Liu, Naiyi Li, Shuo Wang","doi":"10.1109/CMD.2018.8535677","DOIUrl":null,"url":null,"abstract":"In this paper, a method using neural network for optimizing the grading ring of ±1100kV ultra-high voltage direct current (UHVDC) wall bushing is presented. Firstly, the finite element method (FEM) is applied to calculate the electric field distribution along hollow insulator surface with various pipe diameter, ring diameter and installation position of the grading ring and the optimal goal is set according to the FEM numerical results. Then the neural network model is built and trained with L- M algorithm using 300 sets of data calculated by the method of parametric scanning. Finally, the parameters of grading ring are optimized according to the neural network fitting results. The optimized grading ring uniforms the electric field distribution along the hollow insulator surface. This paper can provide a reference on structural design of UHVDC wall bushing.","PeriodicalId":6529,"journal":{"name":"2018 Condition Monitoring and Diagnosis (CMD)","volume":"91 3 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Optimization of Grading Ring for Resin Impregnated Paper UHVDC Wall Bushing Using Neural Network Method\",\"authors\":\"Chenyu Zhao, Zongren Peng, Peng Liu, Naiyi Li, Shuo Wang\",\"doi\":\"10.1109/CMD.2018.8535677\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a method using neural network for optimizing the grading ring of ±1100kV ultra-high voltage direct current (UHVDC) wall bushing is presented. Firstly, the finite element method (FEM) is applied to calculate the electric field distribution along hollow insulator surface with various pipe diameter, ring diameter and installation position of the grading ring and the optimal goal is set according to the FEM numerical results. Then the neural network model is built and trained with L- M algorithm using 300 sets of data calculated by the method of parametric scanning. Finally, the parameters of grading ring are optimized according to the neural network fitting results. The optimized grading ring uniforms the electric field distribution along the hollow insulator surface. This paper can provide a reference on structural design of UHVDC wall bushing.\",\"PeriodicalId\":6529,\"journal\":{\"name\":\"2018 Condition Monitoring and Diagnosis (CMD)\",\"volume\":\"91 3 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Condition Monitoring and Diagnosis (CMD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CMD.2018.8535677\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Condition Monitoring and Diagnosis (CMD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CMD.2018.8535677","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种利用神经网络优化±1100kV特高压直流(UHVDC)壁套分级环的方法。首先,应用有限元法计算了不同管径、环径和分级环安装位置下空心绝缘子表面电场分布,并根据数值结果确定了优化目标;然后利用参数扫描法计算的300组数据,用L- M算法对神经网络模型进行训练。最后,根据神经网络拟合结果对分级环参数进行优化。优化后的分级环使空心绝缘子表面电场分布均匀。本文可为特高压直流墙衬套结构设计提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimization of Grading Ring for Resin Impregnated Paper UHVDC Wall Bushing Using Neural Network Method
In this paper, a method using neural network for optimizing the grading ring of ±1100kV ultra-high voltage direct current (UHVDC) wall bushing is presented. Firstly, the finite element method (FEM) is applied to calculate the electric field distribution along hollow insulator surface with various pipe diameter, ring diameter and installation position of the grading ring and the optimal goal is set according to the FEM numerical results. Then the neural network model is built and trained with L- M algorithm using 300 sets of data calculated by the method of parametric scanning. Finally, the parameters of grading ring are optimized according to the neural network fitting results. The optimized grading ring uniforms the electric field distribution along the hollow insulator surface. This paper can provide a reference on structural design of UHVDC wall bushing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信