基于稀疏性的距离度量(SDM)作为图像质量评估算法的统计评价

K. Priya, K. Manasa, Sumohana S. Channappayya
{"title":"基于稀疏性的距离度量(SDM)作为图像质量评估算法的统计评价","authors":"K. Priya, K. Manasa, Sumohana S. Channappayya","doi":"10.1109/ICASSP.2014.6854108","DOIUrl":null,"url":null,"abstract":"Sparsity-based Distance Measure (SDM), a sparse reconstruction-based image similarity measure was recently proposed and shown to have promising applications in image classification, clustering and retrieval. In this paper, we present a statistical evaluation of SDM's performance as an image quality assessment (IQA) algorithm. This evaluation is carried out on the LIVE image database. We show that the SDM performs fairly in comparison with the state-of-the-art while possessing several attractive properties. Specifically, we demonstrate its robustness to rotation (90°, 180°), scaling, and combinations of distortions - properties that are highly desirable of any IQA algorithm.","PeriodicalId":6545,"journal":{"name":"2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"54 1","pages":"2789-2792"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A statistical evaluation of Sparsity-based Distance Measure (SDM) as an image quality assessment algorithm\",\"authors\":\"K. Priya, K. Manasa, Sumohana S. Channappayya\",\"doi\":\"10.1109/ICASSP.2014.6854108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sparsity-based Distance Measure (SDM), a sparse reconstruction-based image similarity measure was recently proposed and shown to have promising applications in image classification, clustering and retrieval. In this paper, we present a statistical evaluation of SDM's performance as an image quality assessment (IQA) algorithm. This evaluation is carried out on the LIVE image database. We show that the SDM performs fairly in comparison with the state-of-the-art while possessing several attractive properties. Specifically, we demonstrate its robustness to rotation (90°, 180°), scaling, and combinations of distortions - properties that are highly desirable of any IQA algorithm.\",\"PeriodicalId\":6545,\"journal\":{\"name\":\"2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"54 1\",\"pages\":\"2789-2792\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2014.6854108\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2014.6854108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

基于稀疏性的距离度量(SDM)是近年来提出的一种基于稀疏重建的图像相似性度量方法,在图像分类、聚类和检索等方面具有广阔的应用前景。在本文中,我们提出了SDM作为图像质量评估(IQA)算法的性能的统计评估。该评估是在LIVE图像数据库上进行的。我们表明,与最先进的技术相比,SDM的性能相当,同时拥有几个有吸引力的特性。具体来说,我们证明了它对旋转(90°,180°),缩放和扭曲组合的鲁棒性-任何IQA算法都非常需要的属性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A statistical evaluation of Sparsity-based Distance Measure (SDM) as an image quality assessment algorithm
Sparsity-based Distance Measure (SDM), a sparse reconstruction-based image similarity measure was recently proposed and shown to have promising applications in image classification, clustering and retrieval. In this paper, we present a statistical evaluation of SDM's performance as an image quality assessment (IQA) algorithm. This evaluation is carried out on the LIVE image database. We show that the SDM performs fairly in comparison with the state-of-the-art while possessing several attractive properties. Specifically, we demonstrate its robustness to rotation (90°, 180°), scaling, and combinations of distortions - properties that are highly desirable of any IQA algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信