{"title":"自动式扫描微波显微探针","authors":"N. Sarkar, M. Azizi, S. Fouladi, R. Mansour","doi":"10.1109/MWSYM.2012.6259774","DOIUrl":null,"url":null,"abstract":"We present the design and experimental results of a scanning microwave microscopy (SMM) system that does not require the use of a conventional atomic force microscope (AFM). Microfabricated SMM probes are actuated by integrated MEMS scanners in a commercially available multi-user process. This design is unique in the sense that the tip can be scanned over the sample both laterally and vertically, over a 10µm × 10µm scan range. We first validate our approach with a test-bench consisting of a fixed probe and an integrated sample-scanning stage. This device is used to obtain characteristic approach curves of S11 as a function of tip-sample separation. We then investigate the effect of tip-sample separation on the resolution of the instrument. CPW probes with integrated 1-D and 2-D actuation are then presented. These devices can be used to modulate the tip-sample separation to off-chip samples with a periodic (200Hz) signal, improving immunity to long-term system drifts. To increase measurement sensitivity, a single-stub matching network has been used to match high tip to sample impedance to the 50 ohm of a performance network analyzer. Measurement results agree very well with reported SMM measurements in the literature","PeriodicalId":6385,"journal":{"name":"2012 IEEE/MTT-S International Microwave Symposium Digest","volume":"84 1","pages":"1-3"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Self-actuating scanning microwave microscopy probes\",\"authors\":\"N. Sarkar, M. Azizi, S. Fouladi, R. Mansour\",\"doi\":\"10.1109/MWSYM.2012.6259774\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present the design and experimental results of a scanning microwave microscopy (SMM) system that does not require the use of a conventional atomic force microscope (AFM). Microfabricated SMM probes are actuated by integrated MEMS scanners in a commercially available multi-user process. This design is unique in the sense that the tip can be scanned over the sample both laterally and vertically, over a 10µm × 10µm scan range. We first validate our approach with a test-bench consisting of a fixed probe and an integrated sample-scanning stage. This device is used to obtain characteristic approach curves of S11 as a function of tip-sample separation. We then investigate the effect of tip-sample separation on the resolution of the instrument. CPW probes with integrated 1-D and 2-D actuation are then presented. These devices can be used to modulate the tip-sample separation to off-chip samples with a periodic (200Hz) signal, improving immunity to long-term system drifts. To increase measurement sensitivity, a single-stub matching network has been used to match high tip to sample impedance to the 50 ohm of a performance network analyzer. Measurement results agree very well with reported SMM measurements in the literature\",\"PeriodicalId\":6385,\"journal\":{\"name\":\"2012 IEEE/MTT-S International Microwave Symposium Digest\",\"volume\":\"84 1\",\"pages\":\"1-3\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE/MTT-S International Microwave Symposium Digest\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MWSYM.2012.6259774\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE/MTT-S International Microwave Symposium Digest","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSYM.2012.6259774","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
摘要
我们提出了一个扫描微波显微镜(SMM)系统的设计和实验结果,不需要使用传统的原子力显微镜(AFM)。微加工的SMM探针是由集成的MEMS扫描仪在商业上可用的多用户过程中驱动的。这种设计的独特之处在于,尖端可以在10 μ m × 10 μ m的扫描范围内横向和纵向扫描样品。我们首先用一个由固定探针和集成样品扫描阶段组成的测试台验证我们的方法。该装置用于获得S11作为尖端样品分离函数的特征接近曲线。然后我们研究了尖端样品分离对仪器分辨率的影响。然后提出了集成一维和二维驱动的CPW探针。这些器件可用于调制具有周期性(200Hz)信号的尖端样品分离到片外样品,从而提高对长期系统漂移的免疫力。为了提高测量灵敏度,采用单根匹配网络将高尖端与样品阻抗匹配到性能网络分析仪的50欧姆。测量结果与文献中报道的SMM测量结果非常吻合
We present the design and experimental results of a scanning microwave microscopy (SMM) system that does not require the use of a conventional atomic force microscope (AFM). Microfabricated SMM probes are actuated by integrated MEMS scanners in a commercially available multi-user process. This design is unique in the sense that the tip can be scanned over the sample both laterally and vertically, over a 10µm × 10µm scan range. We first validate our approach with a test-bench consisting of a fixed probe and an integrated sample-scanning stage. This device is used to obtain characteristic approach curves of S11 as a function of tip-sample separation. We then investigate the effect of tip-sample separation on the resolution of the instrument. CPW probes with integrated 1-D and 2-D actuation are then presented. These devices can be used to modulate the tip-sample separation to off-chip samples with a periodic (200Hz) signal, improving immunity to long-term system drifts. To increase measurement sensitivity, a single-stub matching network has been used to match high tip to sample impedance to the 50 ohm of a performance network analyzer. Measurement results agree very well with reported SMM measurements in the literature