距离正则图上吉布斯态的正性

Pub Date : 2021-11-03 DOI:10.1142/s0219025722500266
M. Voit
{"title":"距离正则图上吉布斯态的正性","authors":"M. Voit","doi":"10.1142/s0219025722500266","DOIUrl":null,"url":null,"abstract":"We study criteria which ensure that Gibbs states (often also called generalized vacuum states) on distance-regular graphs are positive. Our main criterion assumes that the graph can be embedded into a growing family of distance-regular graphs. For the proof of the positivity we then use polynomial hypergroup theory and translate this positivity into the problem whether for x ∈ [−1, 1] the function n 7→ xn has a positive integral representation w.r.t. the orthogonal polynomials associated with the graph. We apply our criteria to several examples. For Hamming graphs and the infinite distance-transitive graphs we obtain a complete description of the positive Gibbs states.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"POSITIVITY OF GIBBS STATES ON DISTANCE-REGULAR GRAPHS\",\"authors\":\"M. Voit\",\"doi\":\"10.1142/s0219025722500266\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study criteria which ensure that Gibbs states (often also called generalized vacuum states) on distance-regular graphs are positive. Our main criterion assumes that the graph can be embedded into a growing family of distance-regular graphs. For the proof of the positivity we then use polynomial hypergroup theory and translate this positivity into the problem whether for x ∈ [−1, 1] the function n 7→ xn has a positive integral representation w.r.t. the orthogonal polynomials associated with the graph. We apply our criteria to several examples. For Hamming graphs and the infinite distance-transitive graphs we obtain a complete description of the positive Gibbs states.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219025722500266\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219025722500266","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们研究了确保距离正则图上的吉布斯态(通常也称为广义真空态)是正的准则。我们的主要标准假设图可以嵌入到一个不断增长的距离正则图族中。为了证明这个正性,我们使用多项式超群理论,并将这个正性转化为对于x∈[−1,1],函数n7→xn是否具有正的积分表示,即与图相关的正交多项式。我们将我们的标准应用于几个例子。对于Hamming图和无限距离传递图,我们得到了正Gibbs态的完整描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
POSITIVITY OF GIBBS STATES ON DISTANCE-REGULAR GRAPHS
We study criteria which ensure that Gibbs states (often also called generalized vacuum states) on distance-regular graphs are positive. Our main criterion assumes that the graph can be embedded into a growing family of distance-regular graphs. For the proof of the positivity we then use polynomial hypergroup theory and translate this positivity into the problem whether for x ∈ [−1, 1] the function n 7→ xn has a positive integral representation w.r.t. the orthogonal polynomials associated with the graph. We apply our criteria to several examples. For Hamming graphs and the infinite distance-transitive graphs we obtain a complete description of the positive Gibbs states.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信