{"title":"距离正则图上吉布斯态的正性","authors":"M. Voit","doi":"10.1142/s0219025722500266","DOIUrl":null,"url":null,"abstract":"We study criteria which ensure that Gibbs states (often also called generalized vacuum states) on distance-regular graphs are positive. Our main criterion assumes that the graph can be embedded into a growing family of distance-regular graphs. For the proof of the positivity we then use polynomial hypergroup theory and translate this positivity into the problem whether for x ∈ [−1, 1] the function n 7→ xn has a positive integral representation w.r.t. the orthogonal polynomials associated with the graph. We apply our criteria to several examples. For Hamming graphs and the infinite distance-transitive graphs we obtain a complete description of the positive Gibbs states.","PeriodicalId":50366,"journal":{"name":"Infinite Dimensional Analysis Quantum Probability and Related Topics","volume":"4 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2021-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"POSITIVITY OF GIBBS STATES ON DISTANCE-REGULAR GRAPHS\",\"authors\":\"M. Voit\",\"doi\":\"10.1142/s0219025722500266\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study criteria which ensure that Gibbs states (often also called generalized vacuum states) on distance-regular graphs are positive. Our main criterion assumes that the graph can be embedded into a growing family of distance-regular graphs. For the proof of the positivity we then use polynomial hypergroup theory and translate this positivity into the problem whether for x ∈ [−1, 1] the function n 7→ xn has a positive integral representation w.r.t. the orthogonal polynomials associated with the graph. We apply our criteria to several examples. For Hamming graphs and the infinite distance-transitive graphs we obtain a complete description of the positive Gibbs states.\",\"PeriodicalId\":50366,\"journal\":{\"name\":\"Infinite Dimensional Analysis Quantum Probability and Related Topics\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Infinite Dimensional Analysis Quantum Probability and Related Topics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219025722500266\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infinite Dimensional Analysis Quantum Probability and Related Topics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219025722500266","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
POSITIVITY OF GIBBS STATES ON DISTANCE-REGULAR GRAPHS
We study criteria which ensure that Gibbs states (often also called generalized vacuum states) on distance-regular graphs are positive. Our main criterion assumes that the graph can be embedded into a growing family of distance-regular graphs. For the proof of the positivity we then use polynomial hypergroup theory and translate this positivity into the problem whether for x ∈ [−1, 1] the function n 7→ xn has a positive integral representation w.r.t. the orthogonal polynomials associated with the graph. We apply our criteria to several examples. For Hamming graphs and the infinite distance-transitive graphs we obtain a complete description of the positive Gibbs states.
期刊介绍:
In the past few years the fields of infinite dimensional analysis and quantum probability have undergone increasingly significant developments and have found many new applications, in particular, to classical probability and to different branches of physics. The number of first-class papers in these fields has grown at the same rate. This is currently the only journal which is devoted to these fields.
It constitutes an essential and central point of reference for the large number of mathematicians, mathematical physicists and other scientists who have been drawn into these areas. Both fields have strong interdisciplinary nature, with deep connection to, for example, classical probability, stochastic analysis, mathematical physics, operator algebras, irreversibility, ergodic theory and dynamical systems, quantum groups, classical and quantum stochastic geometry, quantum chaos, Dirichlet forms, harmonic analysis, quantum measurement, quantum computer, etc. The journal reflects this interdisciplinarity and welcomes high quality papers in all such related fields, particularly those which reveal connections with the main fields of this journal.