将树分解的包划分为小块

Thomas Bläsius, Maximilian Katzmann, Marcus Wilhelm
{"title":"将树分解的包划分为小块","authors":"Thomas Bläsius, Maximilian Katzmann, Marcus Wilhelm","doi":"10.48550/arXiv.2302.08870","DOIUrl":null,"url":null,"abstract":"We consider a variant of treewidth that we call clique-partitioned treewidth in which each bag is partitioned into cliques. This is motivated by the recent development of FPT-algorithms based on similar parameters for various problems. With this paper, we take a first step towards computing clique-partitioned tree decompositions. Our focus lies on the subproblem of computing clique partitions, i.e., for each bag of a given tree decomposition, we compute an optimal partition of the induced subgraph into cliques. The goal here is to minimize the product of the clique sizes (plus 1). We show that this problem is NP-hard. We also describe four heuristic approaches as well as an exact branch-and-bound algorithm. Our evaluation shows that the branch-and-bound solver is sufficiently efficient to serve as a good baseline. Moreover, our heuristics yield solutions close to the optimum. As a bonus, our algorithms allow us to compute first upper bounds for the clique-partitioned treewidth of real-world networks. A comparison to traditional treewidth indicates that clique-partitioned treewidth is a promising parameter for graphs with high clustering.","PeriodicalId":9448,"journal":{"name":"Bulletin of the Society of Sea Water Science, Japan","volume":"7 1","pages":"3:1-3:19"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Partitioning the Bags of a Tree Decomposition Into Cliques\",\"authors\":\"Thomas Bläsius, Maximilian Katzmann, Marcus Wilhelm\",\"doi\":\"10.48550/arXiv.2302.08870\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a variant of treewidth that we call clique-partitioned treewidth in which each bag is partitioned into cliques. This is motivated by the recent development of FPT-algorithms based on similar parameters for various problems. With this paper, we take a first step towards computing clique-partitioned tree decompositions. Our focus lies on the subproblem of computing clique partitions, i.e., for each bag of a given tree decomposition, we compute an optimal partition of the induced subgraph into cliques. The goal here is to minimize the product of the clique sizes (plus 1). We show that this problem is NP-hard. We also describe four heuristic approaches as well as an exact branch-and-bound algorithm. Our evaluation shows that the branch-and-bound solver is sufficiently efficient to serve as a good baseline. Moreover, our heuristics yield solutions close to the optimum. As a bonus, our algorithms allow us to compute first upper bounds for the clique-partitioned treewidth of real-world networks. A comparison to traditional treewidth indicates that clique-partitioned treewidth is a promising parameter for graphs with high clustering.\",\"PeriodicalId\":9448,\"journal\":{\"name\":\"Bulletin of the Society of Sea Water Science, Japan\",\"volume\":\"7 1\",\"pages\":\"3:1-3:19\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Society of Sea Water Science, Japan\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2302.08870\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Society of Sea Water Science, Japan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2302.08870","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑树宽的一种变体,我们称之为派系划分树宽,其中每个包被划分为派系。这是由最近基于类似参数的各种问题的fpt算法的发展所激发的。在本文中,我们向计算团划分树分解迈出了第一步。我们的重点在于计算团分区的子问题,即对于给定树分解的每个包,我们计算诱导子图的最优分区到团。这里的目标是最小化团大小的乘积(加1)。我们证明这个问题是np困难的。我们还描述了四种启发式方法以及一种精确的分支定界算法。我们的评估表明,分支定界求解器是足够有效的,可以作为一个很好的基线。此外,我们的启发式方法产生了接近最优的解决方案。作为奖励,我们的算法允许我们计算现实世界网络的团划分树宽的第一个上界。与传统树宽的比较表明,对于高聚类的图,团划分树宽是一个很有前途的参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Partitioning the Bags of a Tree Decomposition Into Cliques
We consider a variant of treewidth that we call clique-partitioned treewidth in which each bag is partitioned into cliques. This is motivated by the recent development of FPT-algorithms based on similar parameters for various problems. With this paper, we take a first step towards computing clique-partitioned tree decompositions. Our focus lies on the subproblem of computing clique partitions, i.e., for each bag of a given tree decomposition, we compute an optimal partition of the induced subgraph into cliques. The goal here is to minimize the product of the clique sizes (plus 1). We show that this problem is NP-hard. We also describe four heuristic approaches as well as an exact branch-and-bound algorithm. Our evaluation shows that the branch-and-bound solver is sufficiently efficient to serve as a good baseline. Moreover, our heuristics yield solutions close to the optimum. As a bonus, our algorithms allow us to compute first upper bounds for the clique-partitioned treewidth of real-world networks. A comparison to traditional treewidth indicates that clique-partitioned treewidth is a promising parameter for graphs with high clustering.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信