{"title":"用非凸惩罚改进图趋势过滤","authors":"R. Varma, Harlin Lee, Yuejie Chi, J. Kovacevic","doi":"10.1109/ICASSP.2019.8683279","DOIUrl":null,"url":null,"abstract":"In this paper, we study the denoising of piecewise smooth graph signals that exhibit inhomogeneous levels of smoothness over a graph. We extend the graph trend filtering framework to a family of nonconvex regularizers that exhibit superior recovery performance over existing convex ones. We present theoretical results in the form of asymptotic error rates for both generic and specialized graph models. We further present an ADMM-based algorithm to solve the proposed optimization problem and analyze its convergence. Numerical performance of the proposed framework with non-convex regularizers on both synthetic and real-world data are presented for denoising, support recovery, and semi-supervised classification.","PeriodicalId":13203,"journal":{"name":"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"11 1","pages":"5391-5395"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Improving Graph Trend Filtering with Non-convex Penalties\",\"authors\":\"R. Varma, Harlin Lee, Yuejie Chi, J. Kovacevic\",\"doi\":\"10.1109/ICASSP.2019.8683279\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the denoising of piecewise smooth graph signals that exhibit inhomogeneous levels of smoothness over a graph. We extend the graph trend filtering framework to a family of nonconvex regularizers that exhibit superior recovery performance over existing convex ones. We present theoretical results in the form of asymptotic error rates for both generic and specialized graph models. We further present an ADMM-based algorithm to solve the proposed optimization problem and analyze its convergence. Numerical performance of the proposed framework with non-convex regularizers on both synthetic and real-world data are presented for denoising, support recovery, and semi-supervised classification.\",\"PeriodicalId\":13203,\"journal\":{\"name\":\"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"11 1\",\"pages\":\"5391-5395\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2019.8683279\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2019.8683279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Improving Graph Trend Filtering with Non-convex Penalties
In this paper, we study the denoising of piecewise smooth graph signals that exhibit inhomogeneous levels of smoothness over a graph. We extend the graph trend filtering framework to a family of nonconvex regularizers that exhibit superior recovery performance over existing convex ones. We present theoretical results in the form of asymptotic error rates for both generic and specialized graph models. We further present an ADMM-based algorithm to solve the proposed optimization problem and analyze its convergence. Numerical performance of the proposed framework with non-convex regularizers on both synthetic and real-world data are presented for denoising, support recovery, and semi-supervised classification.