拟线性椭圆算子可容许函数的Kato不等式

Xiaojing Liu, T. Horiuchi
{"title":"拟线性椭圆算子可容许函数的Kato不等式","authors":"Xiaojing Liu, T. Horiuchi","doi":"10.5036/MJIU.51.49","DOIUrl":null,"url":null,"abstract":"Let 1 < p < 1 and let Ω be a bounded domain of R N ( N (cid:21) 1). In this paper, we consider a class of second order quasilinear elliptic operators A in Ω including the p -Laplace operator ∆ p . First we establish various type of Kato’s inequalities for A when A u is a Radon measure. Then we prove the inverse maximum principle and describe the strong maximum principle. For this purpose it is crucial to introduce a notion of admissible class for the operator A and use it effectively. y","PeriodicalId":18362,"journal":{"name":"Mathematical Journal of Ibaraki University","volume":"79 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Kato's inequalities for admissible functions to quasilinear elliptic operators A\",\"authors\":\"Xiaojing Liu, T. Horiuchi\",\"doi\":\"10.5036/MJIU.51.49\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let 1 < p < 1 and let Ω be a bounded domain of R N ( N (cid:21) 1). In this paper, we consider a class of second order quasilinear elliptic operators A in Ω including the p -Laplace operator ∆ p . First we establish various type of Kato’s inequalities for A when A u is a Radon measure. Then we prove the inverse maximum principle and describe the strong maximum principle. For this purpose it is crucial to introduce a notion of admissible class for the operator A and use it effectively. y\",\"PeriodicalId\":18362,\"journal\":{\"name\":\"Mathematical Journal of Ibaraki University\",\"volume\":\"79 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Journal of Ibaraki University\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5036/MJIU.51.49\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Journal of Ibaraki University","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5036/MJIU.51.49","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

设1 < p < 1, Ω是rn (N (cid:21) 1)的有界域。本文考虑了Ω中一类二阶拟线性椭圆算子a,其中包含p -拉普拉斯算子∆p。首先,我们建立了当A u为氡测度时A的各种类型的加藤不等式。然后证明了逆极大值原理并描述了强极大值原理。为此,为算子a引入可容许类的概念并有效地使用它是至关重要的。y
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Kato's inequalities for admissible functions to quasilinear elliptic operators A
Let 1 < p < 1 and let Ω be a bounded domain of R N ( N (cid:21) 1). In this paper, we consider a class of second order quasilinear elliptic operators A in Ω including the p -Laplace operator ∆ p . First we establish various type of Kato’s inequalities for A when A u is a Radon measure. Then we prove the inverse maximum principle and describe the strong maximum principle. For this purpose it is crucial to introduce a notion of admissible class for the operator A and use it effectively. y
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信