基于神经信号的隐私感知文档排序

Jinjin Shao, Shiyu Ji, Tao Yang
{"title":"基于神经信号的隐私感知文档排序","authors":"Jinjin Shao, Shiyu Ji, Tao Yang","doi":"10.1145/3331184.3331189","DOIUrl":null,"url":null,"abstract":"The recent work on neural ranking has achieved solid relevance improvement, by exploring similarities between documents and queries using word embeddings. It is an open problem how to leverage such an advancement for privacy-aware ranking, which is important for top K document search on the cloud. Since neural ranking adds more complexity in score computation, it is difficult to prevent the server from discovering embedding-based semantic features and inferring privacy-sensitive information. This paper analyzes the critical leakages in interaction-based neural ranking and studies countermeasures to mitigate such a leakage. It proposes a privacy-aware neural ranking scheme that integrates tree ensembles with kernel value obfuscation and a soft match map based on adaptively-clustered term closures. The paper also presents an evaluation with two TREC datasets on the relevance of the proposed techniques and the trade-offs for privacy and storage efficiency.","PeriodicalId":20700,"journal":{"name":"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Privacy-aware Document Ranking with Neural Signals\",\"authors\":\"Jinjin Shao, Shiyu Ji, Tao Yang\",\"doi\":\"10.1145/3331184.3331189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The recent work on neural ranking has achieved solid relevance improvement, by exploring similarities between documents and queries using word embeddings. It is an open problem how to leverage such an advancement for privacy-aware ranking, which is important for top K document search on the cloud. Since neural ranking adds more complexity in score computation, it is difficult to prevent the server from discovering embedding-based semantic features and inferring privacy-sensitive information. This paper analyzes the critical leakages in interaction-based neural ranking and studies countermeasures to mitigate such a leakage. It proposes a privacy-aware neural ranking scheme that integrates tree ensembles with kernel value obfuscation and a soft match map based on adaptively-clustered term closures. The paper also presents an evaluation with two TREC datasets on the relevance of the proposed techniques and the trade-offs for privacy and storage efficiency.\",\"PeriodicalId\":20700,\"journal\":{\"name\":\"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3331184.3331189\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3331184.3331189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

通过使用词嵌入来探索文档和查询之间的相似性,最近在神经排序方面的工作已经取得了坚实的相关性改进。如何利用这种进步来进行隐私感知排名是一个悬而未决的问题,这对于在云上搜索top K文档很重要。由于神经排序增加了分数计算的复杂性,很难阻止服务器发现基于嵌入的语义特征并推断隐私敏感信息。本文分析了基于交互的神经网络排序中的关键泄漏,并研究了缓解这种泄漏的对策。提出了一种具有隐私意识的神经排序方案,该方案将树集成与核值混淆和基于自适应聚类术语闭包的软匹配映射相结合。本文还用两个TREC数据集对所提出的技术的相关性以及隐私和存储效率的权衡进行了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Privacy-aware Document Ranking with Neural Signals
The recent work on neural ranking has achieved solid relevance improvement, by exploring similarities between documents and queries using word embeddings. It is an open problem how to leverage such an advancement for privacy-aware ranking, which is important for top K document search on the cloud. Since neural ranking adds more complexity in score computation, it is difficult to prevent the server from discovering embedding-based semantic features and inferring privacy-sensitive information. This paper analyzes the critical leakages in interaction-based neural ranking and studies countermeasures to mitigate such a leakage. It proposes a privacy-aware neural ranking scheme that integrates tree ensembles with kernel value obfuscation and a soft match map based on adaptively-clustered term closures. The paper also presents an evaluation with two TREC datasets on the relevance of the proposed techniques and the trade-offs for privacy and storage efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信