便携式系统电池强制对流冷却的自适应热管理

Q. Xie, Siyu Yue, Massoud Pedram, Donghwa Shin, N. Chang
{"title":"便携式系统电池强制对流冷却的自适应热管理","authors":"Q. Xie, Siyu Yue, Massoud Pedram, Donghwa Shin, N. Chang","doi":"10.7873/DATE.2013.254","DOIUrl":null,"url":null,"abstract":"Cycle life of a battery largely varies according to the battery operating conditions, especially the battery temperature. In particular, batteries age much faster at high temperature. Extensive experiments have shown that the battery temperature varies dramatically during continuous charge or discharge process. This paper introduces a forced convection cooling technique for the batteries that power a portable system. Since the cooling fan is also powered by the same battery, it is critical to develop a highly effective, low power-consuming solution. In addition, there is a fundamental tradeoff between the service time of a battery equipped with fans and the cycle life of the same battery. In particular, as the fan speed is increased, the power dissipated by the fan goes up and hence the full charge capacity of the battery is lost at a faster rate, but at the same time, the battery temperature remains lower and hence the battery longevity increases. This is the first work that formulates the adaptive thermal management problem for batteries (ATMB) in portable systems and provides a systematic solution for it. A hierarchical algorithm combining reinforcement learning at the lower level and dynamic programming at the upper level is proposed to derive the ATMB policy.","PeriodicalId":6310,"journal":{"name":"2013 Design, Automation & Test in Europe Conference & Exhibition (DATE)","volume":"46 1","pages":"1225-1228"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Adaptive thermal management for portable system batteries by forced convection cooling\",\"authors\":\"Q. Xie, Siyu Yue, Massoud Pedram, Donghwa Shin, N. Chang\",\"doi\":\"10.7873/DATE.2013.254\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cycle life of a battery largely varies according to the battery operating conditions, especially the battery temperature. In particular, batteries age much faster at high temperature. Extensive experiments have shown that the battery temperature varies dramatically during continuous charge or discharge process. This paper introduces a forced convection cooling technique for the batteries that power a portable system. Since the cooling fan is also powered by the same battery, it is critical to develop a highly effective, low power-consuming solution. In addition, there is a fundamental tradeoff between the service time of a battery equipped with fans and the cycle life of the same battery. In particular, as the fan speed is increased, the power dissipated by the fan goes up and hence the full charge capacity of the battery is lost at a faster rate, but at the same time, the battery temperature remains lower and hence the battery longevity increases. This is the first work that formulates the adaptive thermal management problem for batteries (ATMB) in portable systems and provides a systematic solution for it. A hierarchical algorithm combining reinforcement learning at the lower level and dynamic programming at the upper level is proposed to derive the ATMB policy.\",\"PeriodicalId\":6310,\"journal\":{\"name\":\"2013 Design, Automation & Test in Europe Conference & Exhibition (DATE)\",\"volume\":\"46 1\",\"pages\":\"1225-1228\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Design, Automation & Test in Europe Conference & Exhibition (DATE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7873/DATE.2013.254\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Design, Automation & Test in Europe Conference & Exhibition (DATE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7873/DATE.2013.254","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

电池的循环寿命在很大程度上受电池工作条件,尤其是电池温度的影响。特别是,电池在高温下老化得更快。大量的实验表明,在连续充放电过程中,电池的温度变化很大。本文介绍了一种用于便携式系统电池的强制对流冷却技术。由于冷却风扇也由相同的电池供电,因此开发高效,低功耗的解决方案至关重要。此外,在配备风扇的电池的使用时间和相同电池的循环寿命之间存在一个基本的权衡。特别是随着风扇转速的提高,风扇耗散的功率增大,电池的满电容量损耗速度加快,但同时电池温度保持较低,电池寿命延长。本文首次提出了便携式系统中电池自适应热管理问题,并为其提供了系统的解决方案。提出了一种下层强化学习和上层动态规划相结合的分层算法来推导ATMB策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive thermal management for portable system batteries by forced convection cooling
Cycle life of a battery largely varies according to the battery operating conditions, especially the battery temperature. In particular, batteries age much faster at high temperature. Extensive experiments have shown that the battery temperature varies dramatically during continuous charge or discharge process. This paper introduces a forced convection cooling technique for the batteries that power a portable system. Since the cooling fan is also powered by the same battery, it is critical to develop a highly effective, low power-consuming solution. In addition, there is a fundamental tradeoff between the service time of a battery equipped with fans and the cycle life of the same battery. In particular, as the fan speed is increased, the power dissipated by the fan goes up and hence the full charge capacity of the battery is lost at a faster rate, but at the same time, the battery temperature remains lower and hence the battery longevity increases. This is the first work that formulates the adaptive thermal management problem for batteries (ATMB) in portable systems and provides a systematic solution for it. A hierarchical algorithm combining reinforcement learning at the lower level and dynamic programming at the upper level is proposed to derive the ATMB policy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信