软件定义网络的鲁棒网络流量建模方法

Liuwei Huo, Dingde Jiang, H. Song
{"title":"软件定义网络的鲁棒网络流量建模方法","authors":"Liuwei Huo, Dingde Jiang, H. Song","doi":"10.1109/GLOBECOM38437.2019.9013538","DOIUrl":null,"url":null,"abstract":"Software Defined Networking (SDN) architecture satisfies the flexibility and scalability requirements of Internet of Things (IoT) network. A large amounts of IoT data is transmitted and exchanged through IoT network. However, many of services of IoT are sensitive to latency and bandwidth, so the network traffic model and measurement in IoT are different legacy networks. In this paper, we propose a robust network traffic modeling approach and use it to estimate network traffic in IoT. To obtain the measurement results with low overhead and high accuracy, we model the network traffic as liner function with noise. Then, we collect the statistics of coarse-grained traffic of flows and fine-grained traffic of links, and use the robust network traffic model to forecast the network traffic with the coarse-grained measurement of flows. In order to optimize the estimation results, we propose an optimization function to decrease the estimation errors. Since the optimization function is NP-hard problem, then we use a heuristic algorithm to obtain the optimal solution of the fine-grained measurement. Finally, we conduct some simulations to verify the proposed measurement scheme. Simulation results show that our approach is feasible and effective.","PeriodicalId":6868,"journal":{"name":"2019 IEEE Global Communications Conference (GLOBECOM)","volume":"1 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Robust Network Traffic Modeling Approach to Software Defined Networking\",\"authors\":\"Liuwei Huo, Dingde Jiang, H. Song\",\"doi\":\"10.1109/GLOBECOM38437.2019.9013538\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Software Defined Networking (SDN) architecture satisfies the flexibility and scalability requirements of Internet of Things (IoT) network. A large amounts of IoT data is transmitted and exchanged through IoT network. However, many of services of IoT are sensitive to latency and bandwidth, so the network traffic model and measurement in IoT are different legacy networks. In this paper, we propose a robust network traffic modeling approach and use it to estimate network traffic in IoT. To obtain the measurement results with low overhead and high accuracy, we model the network traffic as liner function with noise. Then, we collect the statistics of coarse-grained traffic of flows and fine-grained traffic of links, and use the robust network traffic model to forecast the network traffic with the coarse-grained measurement of flows. In order to optimize the estimation results, we propose an optimization function to decrease the estimation errors. Since the optimization function is NP-hard problem, then we use a heuristic algorithm to obtain the optimal solution of the fine-grained measurement. Finally, we conduct some simulations to verify the proposed measurement scheme. Simulation results show that our approach is feasible and effective.\",\"PeriodicalId\":6868,\"journal\":{\"name\":\"2019 IEEE Global Communications Conference (GLOBECOM)\",\"volume\":\"1 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Global Communications Conference (GLOBECOM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GLOBECOM38437.2019.9013538\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Global Communications Conference (GLOBECOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOBECOM38437.2019.9013538","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

软件定义网络(SDN)架构满足了物联网网络对灵活性和可扩展性的要求。大量的物联网数据通过物联网网络进行传输和交换。然而,物联网的许多业务对延迟和带宽都很敏感,因此物联网中的网络流量模型和测量与传统网络不同。在本文中,我们提出了一种鲁棒的网络流量建模方法,并将其用于估计物联网中的网络流量。为了获得低开销、高精度的测量结果,我们将网络流量建模为带噪声的线性函数。然后,对流量的粗粒度流量和链路的细粒度流量进行统计,利用鲁棒网络流量模型对粗粒度流量进行预测。为了优化估计结果,我们提出了一个优化函数来减小估计误差。由于优化函数是np困难问题,因此我们使用启发式算法来获得细粒度测量的最优解。最后,通过仿真验证了所提出的测量方案。仿真结果表明了该方法的可行性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Robust Network Traffic Modeling Approach to Software Defined Networking
Software Defined Networking (SDN) architecture satisfies the flexibility and scalability requirements of Internet of Things (IoT) network. A large amounts of IoT data is transmitted and exchanged through IoT network. However, many of services of IoT are sensitive to latency and bandwidth, so the network traffic model and measurement in IoT are different legacy networks. In this paper, we propose a robust network traffic modeling approach and use it to estimate network traffic in IoT. To obtain the measurement results with low overhead and high accuracy, we model the network traffic as liner function with noise. Then, we collect the statistics of coarse-grained traffic of flows and fine-grained traffic of links, and use the robust network traffic model to forecast the network traffic with the coarse-grained measurement of flows. In order to optimize the estimation results, we propose an optimization function to decrease the estimation errors. Since the optimization function is NP-hard problem, then we use a heuristic algorithm to obtain the optimal solution of the fine-grained measurement. Finally, we conduct some simulations to verify the proposed measurement scheme. Simulation results show that our approach is feasible and effective.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信