李群中交换元空间的同调稳定性

D. Ramras, Mentor Stafa
{"title":"李群中交换元空间的同调稳定性","authors":"D. Ramras, Mentor Stafa","doi":"10.1093/IMRN/RNAA094","DOIUrl":null,"url":null,"abstract":"In this paper we study homological stability for spaces ${\\rm Hom}(\\mathbb{Z}^n,G)$ of pairwise commuting $n$-tuples in a Lie group $G$. We prove that for each $n\\geqslant 1$, these spaces satisfy rational homological stability as $G$ ranges through any of the classical sequences of compact, connected Lie groups, or their complexifications. We prove similar results for rational equivariant homology, for character varieties, and for the infinite-dimensional analogues of these spaces, ${\\rm Comm}(G)$ and ${\\rm B_{com}} G$, introduced by Cohen-Stafa and Adem-Cohen-Torres-Giese respectively. In addition, we show that the rational homology of the space of unordered commuting $n$-tuples in a fixed group $G$ stabilizes as $n$ increases. Our proofs use the theory of representation stability - in particular, the theory of ${\\rm FI}_W$-modules developed by Church-Ellenberg-Farb and Wilson. In all of the these results, we obtain specific bounds on the stable range, and we show that the homology isomorphisms are induced by maps of spaces.","PeriodicalId":8433,"journal":{"name":"arXiv: Algebraic Topology","volume":"60 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Homological Stability for Spaces of Commuting Elements in Lie Groups\",\"authors\":\"D. Ramras, Mentor Stafa\",\"doi\":\"10.1093/IMRN/RNAA094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we study homological stability for spaces ${\\\\rm Hom}(\\\\mathbb{Z}^n,G)$ of pairwise commuting $n$-tuples in a Lie group $G$. We prove that for each $n\\\\geqslant 1$, these spaces satisfy rational homological stability as $G$ ranges through any of the classical sequences of compact, connected Lie groups, or their complexifications. We prove similar results for rational equivariant homology, for character varieties, and for the infinite-dimensional analogues of these spaces, ${\\\\rm Comm}(G)$ and ${\\\\rm B_{com}} G$, introduced by Cohen-Stafa and Adem-Cohen-Torres-Giese respectively. In addition, we show that the rational homology of the space of unordered commuting $n$-tuples in a fixed group $G$ stabilizes as $n$ increases. Our proofs use the theory of representation stability - in particular, the theory of ${\\\\rm FI}_W$-modules developed by Church-Ellenberg-Farb and Wilson. In all of the these results, we obtain specific bounds on the stable range, and we show that the homology isomorphisms are induced by maps of spaces.\",\"PeriodicalId\":8433,\"journal\":{\"name\":\"arXiv: Algebraic Topology\",\"volume\":\"60 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Algebraic Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/IMRN/RNAA094\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Algebraic Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/IMRN/RNAA094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

本文研究了李群$G$中对交换$n$ -元组的空间${\rm Hom}(\mathbb{Z}^n,G)$的同调稳定性。我们证明了对于每一个$n\geqslant 1$,这些空间在$G$范围内通过紧连李群的任何经典序列或它们的复化,都满足有理同调稳定性。我们分别证明了Cohen-Stafa和Adem-Cohen-Torres-Giese分别引入的有理等变同调、字符变异和这些空间的无限维类似物${\rm Comm}(G)$和${\rm B_{com}} G$的类似结果。此外,我们还证明了固定群$G$上无序可交换$n$ -元组空间的有理同调随着$n$的增加而趋于稳定。我们的证明使用了表征稳定性理论,特别是由Church-Ellenberg-Farb和Wilson开发的${\rm FI}_W$模块理论。在所有这些结果中,我们得到了稳定范围上的特定界,并证明了同构是由空间映射引起的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Homological Stability for Spaces of Commuting Elements in Lie Groups
In this paper we study homological stability for spaces ${\rm Hom}(\mathbb{Z}^n,G)$ of pairwise commuting $n$-tuples in a Lie group $G$. We prove that for each $n\geqslant 1$, these spaces satisfy rational homological stability as $G$ ranges through any of the classical sequences of compact, connected Lie groups, or their complexifications. We prove similar results for rational equivariant homology, for character varieties, and for the infinite-dimensional analogues of these spaces, ${\rm Comm}(G)$ and ${\rm B_{com}} G$, introduced by Cohen-Stafa and Adem-Cohen-Torres-Giese respectively. In addition, we show that the rational homology of the space of unordered commuting $n$-tuples in a fixed group $G$ stabilizes as $n$ increases. Our proofs use the theory of representation stability - in particular, the theory of ${\rm FI}_W$-modules developed by Church-Ellenberg-Farb and Wilson. In all of the these results, we obtain specific bounds on the stable range, and we show that the homology isomorphisms are induced by maps of spaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信