富兰克林的随机反应模型与相关的混乱变量

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Christopher Aguirre‐Hamilton, Stephen A. Sedory, Sarjinder Singh
{"title":"富兰克林的随机反应模型与相关的混乱变量","authors":"Christopher Aguirre‐Hamilton, Stephen A. Sedory, Sarjinder Singh","doi":"10.1111/stan.12318","DOIUrl":null,"url":null,"abstract":"We propose two types of estimators that are analogous to Franklin's model. One estimator is derived by concentrating on the row averages of the responses, and another is obtained by concentrating on the column averages of the observed responses. In the latter case we have two responses per respondent from a bi‐variate normal distribution. The proposed estimator based on row averages, by making use of negatively correlated random numbers from a multivariate density, is always more efficient than the corresponding Franklin's estimator. In the case of the proposed estimator based on column averages, we found that the use of positively correlated random numbers from a bivariate density can lead to the most efficient estimator. We also discuss results which are observed by making use of three responses per respondent. When the three responses are recorded, three independent normal densities are derived from three correlated variables. The findings are supported based on analytical, numerical and simulation studies. A simulation study was done to determine the minimum sample size required to produce non‐negative estimates of the population proportion of a sensitive characteristic, and to investigate the 95% nominal coverage by the interval estimates. Ultimately at the end, one best estimator is suggested. A very neat and clean derivations of theoretical results and discussion of numerical and simulation studies are documented in online supplementary material.This article is protected by copyright. All rights reserved.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Franklin's Randomized Response Model With Correlated Scrambled Variables\",\"authors\":\"Christopher Aguirre‐Hamilton, Stephen A. Sedory, Sarjinder Singh\",\"doi\":\"10.1111/stan.12318\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose two types of estimators that are analogous to Franklin's model. One estimator is derived by concentrating on the row averages of the responses, and another is obtained by concentrating on the column averages of the observed responses. In the latter case we have two responses per respondent from a bi‐variate normal distribution. The proposed estimator based on row averages, by making use of negatively correlated random numbers from a multivariate density, is always more efficient than the corresponding Franklin's estimator. In the case of the proposed estimator based on column averages, we found that the use of positively correlated random numbers from a bivariate density can lead to the most efficient estimator. We also discuss results which are observed by making use of three responses per respondent. When the three responses are recorded, three independent normal densities are derived from three correlated variables. The findings are supported based on analytical, numerical and simulation studies. A simulation study was done to determine the minimum sample size required to produce non‐negative estimates of the population proportion of a sensitive characteristic, and to investigate the 95% nominal coverage by the interval estimates. Ultimately at the end, one best estimator is suggested. A very neat and clean derivations of theoretical results and discussion of numerical and simulation studies are documented in online supplementary material.This article is protected by copyright. All rights reserved.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1111/stan.12318\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1111/stan.12318","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了两种类似于富兰克林模型的估计器。一个估计量是通过集中于响应的行平均值得到的,另一个估计量是通过集中于观察到的响应的列平均值得到的。在后一种情况下,我们从双变量正态分布中得到每个应答者的两个回答。所提出的基于行平均值的估计器,通过利用来自多元密度的负相关随机数,总是比相应的富兰克林估计器更有效。在基于列平均值的估计器的情况下,我们发现使用来自二元密度的正相关随机数可以产生最有效的估计器。我们还讨论了通过使用每个受访者的三个回答来观察到的结果。当记录三个响应时,三个独立的正态密度由三个相关变量导出。这些发现得到了分析、数值和模拟研究的支持。进行了模拟研究,以确定产生敏感特征总体比例的非负估计所需的最小样本量,并通过区间估计调查95%的名义覆盖率。最后,给出了一个最好的估计器。一个非常整洁和干净的推导理论结果和讨论的数值和模拟研究记录在网上补充材料。这篇文章受版权保护。版权所有。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Franklin's Randomized Response Model With Correlated Scrambled Variables
We propose two types of estimators that are analogous to Franklin's model. One estimator is derived by concentrating on the row averages of the responses, and another is obtained by concentrating on the column averages of the observed responses. In the latter case we have two responses per respondent from a bi‐variate normal distribution. The proposed estimator based on row averages, by making use of negatively correlated random numbers from a multivariate density, is always more efficient than the corresponding Franklin's estimator. In the case of the proposed estimator based on column averages, we found that the use of positively correlated random numbers from a bivariate density can lead to the most efficient estimator. We also discuss results which are observed by making use of three responses per respondent. When the three responses are recorded, three independent normal densities are derived from three correlated variables. The findings are supported based on analytical, numerical and simulation studies. A simulation study was done to determine the minimum sample size required to produce non‐negative estimates of the population proportion of a sensitive characteristic, and to investigate the 95% nominal coverage by the interval estimates. Ultimately at the end, one best estimator is suggested. A very neat and clean derivations of theoretical results and discussion of numerical and simulation studies are documented in online supplementary material.This article is protected by copyright. All rights reserved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信