一种用于电子元件空间-环境热控制的简单蒸发系统

R. F. O'Neill
{"title":"一种用于电子元件空间-环境热控制的简单蒸发系统","authors":"R. F. O'Neill","doi":"10.1109/TA.1965.4319816","DOIUrl":null,"url":null,"abstract":"A passive mass transfer thermodynamic device employing the latent heat of vaporization of an enclosed liquid is described as a method of precise thermal control for single, low-mass, high-energy electronic components. This device has particular application for electronic components having high power density which are incorporated in spacecraft electronic systems relying otherwise on radiant exchange with the environment as a means of space-environmental thermal control. Specific areas of interest growing out of the design requirements for such a mass transfer device are 1) liquid ullage control under zero-g conditions, precluding loss of liquid due to blow-out, and 2) favorable exploitation of liquid adsorption and surface phenomena in maintaining a continuous heat-sinking effect. The latter effect is demonstrated by data obtained in operating appropriately instrumented thermal control test articles under one-g conditions in vacuum and non-vacuum environments. Satisfactory heat-sinking is demonstrated over a range of energy inputs. Application of the system methodology and capabilities to the problem of space-environmental thermal control is evaluated and summarized.","PeriodicalId":13050,"journal":{"name":"IEEE Transactions on Aerospace","volume":"2 1","pages":"296-303"},"PeriodicalIF":0.0000,"publicationDate":"1965-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Simple Evaporative System for Space-Environmental Thermal Control of Electronic Components\",\"authors\":\"R. F. O'Neill\",\"doi\":\"10.1109/TA.1965.4319816\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A passive mass transfer thermodynamic device employing the latent heat of vaporization of an enclosed liquid is described as a method of precise thermal control for single, low-mass, high-energy electronic components. This device has particular application for electronic components having high power density which are incorporated in spacecraft electronic systems relying otherwise on radiant exchange with the environment as a means of space-environmental thermal control. Specific areas of interest growing out of the design requirements for such a mass transfer device are 1) liquid ullage control under zero-g conditions, precluding loss of liquid due to blow-out, and 2) favorable exploitation of liquid adsorption and surface phenomena in maintaining a continuous heat-sinking effect. The latter effect is demonstrated by data obtained in operating appropriately instrumented thermal control test articles under one-g conditions in vacuum and non-vacuum environments. Satisfactory heat-sinking is demonstrated over a range of energy inputs. Application of the system methodology and capabilities to the problem of space-environmental thermal control is evaluated and summarized.\",\"PeriodicalId\":13050,\"journal\":{\"name\":\"IEEE Transactions on Aerospace\",\"volume\":\"2 1\",\"pages\":\"296-303\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1965-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Aerospace\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TA.1965.4319816\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Aerospace","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TA.1965.4319816","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

一种利用封闭液体汽化潜热的被动传质热力学装置被描述为一种对单个、低质量、高能电子元件进行精确热控制的方法。该装置特别适用于具有高功率密度的电子元件,这些电子元件被纳入航天器电子系统,依靠与环境的辐射交换作为空间-环境热控制的手段。对这种传质装置的设计要求产生的具体兴趣领域是:1)在零重力条件下控制液体容积,防止因吹出而造成液体损失;2)在保持连续散热效果中有利地利用液体吸附和表面现象。在真空和非真空环境下,在1g条件下操作适当仪表化的热控试验件所获得的数据证明了后一种效应。在各种能量输入范围内都证明了令人满意的散热效果。评价和总结了该系统在空间环境热控制问题上的应用方法和能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Simple Evaporative System for Space-Environmental Thermal Control of Electronic Components
A passive mass transfer thermodynamic device employing the latent heat of vaporization of an enclosed liquid is described as a method of precise thermal control for single, low-mass, high-energy electronic components. This device has particular application for electronic components having high power density which are incorporated in spacecraft electronic systems relying otherwise on radiant exchange with the environment as a means of space-environmental thermal control. Specific areas of interest growing out of the design requirements for such a mass transfer device are 1) liquid ullage control under zero-g conditions, precluding loss of liquid due to blow-out, and 2) favorable exploitation of liquid adsorption and surface phenomena in maintaining a continuous heat-sinking effect. The latter effect is demonstrated by data obtained in operating appropriately instrumented thermal control test articles under one-g conditions in vacuum and non-vacuum environments. Satisfactory heat-sinking is demonstrated over a range of energy inputs. Application of the system methodology and capabilities to the problem of space-environmental thermal control is evaluated and summarized.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信