合成聚合物的热降解研究(10)

T. Sawaguchi, Takeshi Kuroki, T. Ikemura
{"title":"合成聚合物的热降解研究(10)","authors":"T. Sawaguchi, Takeshi Kuroki, T. Ikemura","doi":"10.1627/JPI1959.19.124","DOIUrl":null,"url":null,"abstract":"Thermal gasification of polyethylene (PE), polypropylene (PP), and polyisobutylene (PIB) was carried out under atmospheric pressure using the flow system of a fixed bed reactor. From an experimental equation, IF=Tθa, product yields were estimated, where IF is the intensity function (°C•seca), T is the reaction temperature (°C), θ is the residence time (sec), and a is a constant (-). The effect of the structure of polyolefin on the value of \"a\" was also discussed.The pyrolysts conditions used in this study were as follows: temperature, 500∼800°C; the residence time, 0.6∼7.1sec; and the dilution ratio of steam to polymer by weight, 0.6∼7.5.The operating factors were inferred to be reaction temperature and residence time. For a given product yield, these two factors were interchangeable. Equations for yielding methane were expressed as_follows: (PE): IF=Tθ0.04, (PP); IF=Tθ0.05, (PIB); IF=Tθ0.07.As IF was correlated to the product yield, the product yield could be predicted by some appropriate choice of pyrolysis conditions. The value of \"a\" of a polyolefin was correlated to the activation energy (ΔE) for thermal degradation and to temperature (T1/2) corresponding to 50% weight loss. These two parameters were determined from the TG curve.","PeriodicalId":9596,"journal":{"name":"Bulletin of The Japan Petroleum Institute","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1977-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Studies on Thermal Degradation of Synthetic Polymers (Part 10)\",\"authors\":\"T. Sawaguchi, Takeshi Kuroki, T. Ikemura\",\"doi\":\"10.1627/JPI1959.19.124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Thermal gasification of polyethylene (PE), polypropylene (PP), and polyisobutylene (PIB) was carried out under atmospheric pressure using the flow system of a fixed bed reactor. From an experimental equation, IF=Tθa, product yields were estimated, where IF is the intensity function (°C•seca), T is the reaction temperature (°C), θ is the residence time (sec), and a is a constant (-). The effect of the structure of polyolefin on the value of \\\"a\\\" was also discussed.The pyrolysts conditions used in this study were as follows: temperature, 500∼800°C; the residence time, 0.6∼7.1sec; and the dilution ratio of steam to polymer by weight, 0.6∼7.5.The operating factors were inferred to be reaction temperature and residence time. For a given product yield, these two factors were interchangeable. Equations for yielding methane were expressed as_follows: (PE): IF=Tθ0.04, (PP); IF=Tθ0.05, (PIB); IF=Tθ0.07.As IF was correlated to the product yield, the product yield could be predicted by some appropriate choice of pyrolysis conditions. The value of \\\"a\\\" of a polyolefin was correlated to the activation energy (ΔE) for thermal degradation and to temperature (T1/2) corresponding to 50% weight loss. These two parameters were determined from the TG curve.\",\"PeriodicalId\":9596,\"journal\":{\"name\":\"Bulletin of The Japan Petroleum Institute\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1977-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of The Japan Petroleum Institute\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1627/JPI1959.19.124\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of The Japan Petroleum Institute","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1627/JPI1959.19.124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

采用固定床反应器的流动系统,在常压下对聚乙烯(PE)、聚丙烯(PP)和聚异丁烯(PIB)进行了热气化。根据实验方程IF=Tθa估算产物产率,其中IF为强度函数(°C•seca), T为反应温度(°C), θ为停留时间(sec), a为常数(-)。讨论了聚烯烃结构对“a”值的影响。本研究中使用的热解条件如下:温度,500 ~ 800℃;停留时间,0.6 ~ 7.1秒;水蒸气与聚合物的重量稀释比为0.6 ~ 7.5。操作因素为反应温度和停留时间。对于给定的产品收率,这两个因素是可以互换的。产甲烷方程表示如下:(PE): IF=Tθ0.04, (PP);如果Tθ= 0.05,(加以);如果Tθ= 0.07。由于IF与产物收率相关,因此可以通过适当选择热解条件来预测产物收率。聚烯烃的“a”值与热降解活化能(ΔE)和失重50%时对应的温度(T1/2)相关。这两个参数由热重曲线确定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Studies on Thermal Degradation of Synthetic Polymers (Part 10)
Thermal gasification of polyethylene (PE), polypropylene (PP), and polyisobutylene (PIB) was carried out under atmospheric pressure using the flow system of a fixed bed reactor. From an experimental equation, IF=Tθa, product yields were estimated, where IF is the intensity function (°C•seca), T is the reaction temperature (°C), θ is the residence time (sec), and a is a constant (-). The effect of the structure of polyolefin on the value of "a" was also discussed.The pyrolysts conditions used in this study were as follows: temperature, 500∼800°C; the residence time, 0.6∼7.1sec; and the dilution ratio of steam to polymer by weight, 0.6∼7.5.The operating factors were inferred to be reaction temperature and residence time. For a given product yield, these two factors were interchangeable. Equations for yielding methane were expressed as_follows: (PE): IF=Tθ0.04, (PP); IF=Tθ0.05, (PIB); IF=Tθ0.07.As IF was correlated to the product yield, the product yield could be predicted by some appropriate choice of pyrolysis conditions. The value of "a" of a polyolefin was correlated to the activation energy (ΔE) for thermal degradation and to temperature (T1/2) corresponding to 50% weight loss. These two parameters were determined from the TG curve.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信