{"title":"基于位置和功率调节模型预测控制的浮式风力发电机组实时再定位","authors":"Timothé Jard, Reda Snaiki","doi":"10.3390/wind3020009","DOIUrl":null,"url":null,"abstract":"As offshore wind capacity could grow substantially in the coming years, floating offshore wind turbines (FOWTs) are particularly expected to make a significant contribution to the anticipated global installed capacity. However, FOWTs are prone to several issues due partly to environmental perturbations and their system configuration which affect their performances and jeopardize their structural integrity. Therefore, advanced control mechanisms are required to ensure good performance and operation of FOWTs. In this study, a model predictive control (MPC) is proposed to regulate FOWTs’ power, reposition their platforms to reach predefined target positions and ensure their structural stability. An efficient nonlinear state space model is used as the internal MPC predictive model. The control strategy is based on the direct manipulation of the thrust force using three control inputs, namely the yaw angle, the collective blade pitch angle, and the generator torque without the necessity of additional actuators. The proposed controller accounts for the environmental perturbations and satisfies the system constraints to ensure good performance and operation of the FOWTs. A realistic scenario for a 5-MW reference wind turbine, modeled using OpenFAST and Simulink, has been provided to demonstrate the robustness of the proposed MPC controller. Furthermore, the comparison of the MPC model and a proportional-integral-derivative (PID) model to satisfy the three predefined objectives indicates the superior performances of the MPC controller.","PeriodicalId":51210,"journal":{"name":"Wind and Structures","volume":"8 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Real-Time Repositioning of Floating Wind Turbines Using Model Predictive Control for Position and Power Regulation\",\"authors\":\"Timothé Jard, Reda Snaiki\",\"doi\":\"10.3390/wind3020009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As offshore wind capacity could grow substantially in the coming years, floating offshore wind turbines (FOWTs) are particularly expected to make a significant contribution to the anticipated global installed capacity. However, FOWTs are prone to several issues due partly to environmental perturbations and their system configuration which affect their performances and jeopardize their structural integrity. Therefore, advanced control mechanisms are required to ensure good performance and operation of FOWTs. In this study, a model predictive control (MPC) is proposed to regulate FOWTs’ power, reposition their platforms to reach predefined target positions and ensure their structural stability. An efficient nonlinear state space model is used as the internal MPC predictive model. The control strategy is based on the direct manipulation of the thrust force using three control inputs, namely the yaw angle, the collective blade pitch angle, and the generator torque without the necessity of additional actuators. The proposed controller accounts for the environmental perturbations and satisfies the system constraints to ensure good performance and operation of the FOWTs. A realistic scenario for a 5-MW reference wind turbine, modeled using OpenFAST and Simulink, has been provided to demonstrate the robustness of the proposed MPC controller. Furthermore, the comparison of the MPC model and a proportional-integral-derivative (PID) model to satisfy the three predefined objectives indicates the superior performances of the MPC controller.\",\"PeriodicalId\":51210,\"journal\":{\"name\":\"Wind and Structures\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wind and Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/wind3020009\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wind and Structures","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/wind3020009","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Real-Time Repositioning of Floating Wind Turbines Using Model Predictive Control for Position and Power Regulation
As offshore wind capacity could grow substantially in the coming years, floating offshore wind turbines (FOWTs) are particularly expected to make a significant contribution to the anticipated global installed capacity. However, FOWTs are prone to several issues due partly to environmental perturbations and their system configuration which affect their performances and jeopardize their structural integrity. Therefore, advanced control mechanisms are required to ensure good performance and operation of FOWTs. In this study, a model predictive control (MPC) is proposed to regulate FOWTs’ power, reposition their platforms to reach predefined target positions and ensure their structural stability. An efficient nonlinear state space model is used as the internal MPC predictive model. The control strategy is based on the direct manipulation of the thrust force using three control inputs, namely the yaw angle, the collective blade pitch angle, and the generator torque without the necessity of additional actuators. The proposed controller accounts for the environmental perturbations and satisfies the system constraints to ensure good performance and operation of the FOWTs. A realistic scenario for a 5-MW reference wind turbine, modeled using OpenFAST and Simulink, has been provided to demonstrate the robustness of the proposed MPC controller. Furthermore, the comparison of the MPC model and a proportional-integral-derivative (PID) model to satisfy the three predefined objectives indicates the superior performances of the MPC controller.
期刊介绍:
The WIND AND STRUCTURES, An International Journal, aims at: - Major publication channel for research in the general area of wind and structural engineering, - Wider distribution at more affordable subscription rates; - Faster reviewing and publication for manuscripts submitted.
The main theme of the Journal is the wind effects on structures. Areas covered by the journal include:
Wind loads and structural response,
Bluff-body aerodynamics,
Computational method,
Wind tunnel modeling,
Local wind environment,
Codes and regulations,
Wind effects on large scale structures.