非线性微分方程的稳定性检验和解估计

IF 2.2 Q1 MATHEMATICS, APPLIED
O. Tunç
{"title":"非线性微分方程的稳定性检验和解估计","authors":"O. Tunç","doi":"10.11121/ijocta.2023.1251","DOIUrl":null,"url":null,"abstract":"This article deals with certain systems of delay differential equations (DDEs) and a system of ordinary differential equations (ODEs). Here, five new theorems are proved on the fundamental properties of solutions of these systems. The results on the properties of solutions consist of sufficient conditions and they dealt with uniformly asymptotically stability (UAS), instability and integrability of solutions of unperturbed systems of DDEs, boundedness of solutions of a perturbed system of DDEs at infinity and exponentially stability (ES) of solutions of a system of nonlinear ODEs. Here, the techniques of proofs depend upon the Lyapunov- Krasovski? functional (LKF) method and Lyapunov function (LF) method. For illustrations, in particular cases, four examples are constructed as applications. Some results of this paper are given at first time in the literature, and the other results generalize and improve some related ones in the literature.","PeriodicalId":37369,"journal":{"name":"International Journal of Optimization and Control: Theories and Applications","volume":"74 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability tests and solution estimates for non-linear differential equations\",\"authors\":\"O. Tunç\",\"doi\":\"10.11121/ijocta.2023.1251\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article deals with certain systems of delay differential equations (DDEs) and a system of ordinary differential equations (ODEs). Here, five new theorems are proved on the fundamental properties of solutions of these systems. The results on the properties of solutions consist of sufficient conditions and they dealt with uniformly asymptotically stability (UAS), instability and integrability of solutions of unperturbed systems of DDEs, boundedness of solutions of a perturbed system of DDEs at infinity and exponentially stability (ES) of solutions of a system of nonlinear ODEs. Here, the techniques of proofs depend upon the Lyapunov- Krasovski? functional (LKF) method and Lyapunov function (LF) method. For illustrations, in particular cases, four examples are constructed as applications. Some results of this paper are given at first time in the literature, and the other results generalize and improve some related ones in the literature.\",\"PeriodicalId\":37369,\"journal\":{\"name\":\"International Journal of Optimization and Control: Theories and Applications\",\"volume\":\"74 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Optimization and Control: Theories and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11121/ijocta.2023.1251\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Optimization and Control: Theories and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11121/ijocta.2023.1251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了一类时滞微分方程组和一类常微分方程组。本文证明了关于这些系统解的基本性质的五个新定理。关于解的性质的结果是由充分条件组成的,它们处理了一致渐近稳定性(UAS)、无摄动DDEs系统解的不稳定性和可积性、摄动DDEs系统无穷远处解的有界性和非线性ODEs系统解的指数稳定性(ES)。在这里,证明的技巧取决于李亚普诺夫-克拉索夫斯基?泛函(LKF)法和李雅普诺夫函数(LF)法。为了说明,在特殊情况下,四个例子被构造为应用程序。本文的一些结果在文献中是首次给出的,另一些结果是对文献中一些相关结果的推广和改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stability tests and solution estimates for non-linear differential equations
This article deals with certain systems of delay differential equations (DDEs) and a system of ordinary differential equations (ODEs). Here, five new theorems are proved on the fundamental properties of solutions of these systems. The results on the properties of solutions consist of sufficient conditions and they dealt with uniformly asymptotically stability (UAS), instability and integrability of solutions of unperturbed systems of DDEs, boundedness of solutions of a perturbed system of DDEs at infinity and exponentially stability (ES) of solutions of a system of nonlinear ODEs. Here, the techniques of proofs depend upon the Lyapunov- Krasovski? functional (LKF) method and Lyapunov function (LF) method. For illustrations, in particular cases, four examples are constructed as applications. Some results of this paper are given at first time in the literature, and the other results generalize and improve some related ones in the literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
6.20%
发文量
13
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信