协同标记系统中基于lda的用户兴趣发现

Shuang Song, Li Yu, Xiaoping Yang
{"title":"协同标记系统中基于lda的用户兴趣发现","authors":"Shuang Song, Li Yu, Xiaoping Yang","doi":"10.1109/ISKE.2010.5680852","DOIUrl":null,"url":null,"abstract":"The success and popularity of collaborative tagging systems, such as delicious1, Flickr2, Last.fm3, has increasingly centered on. Users of these websites can easily tag their interested WebPages, photos and music with their preferred words. Subsequently, the extensive tagging data attract many researchers to mine useful information from these. In this paper, we propose a novel user interests quantified approach based on user-generated tags. Moreover, by means of the generative probabilistic model Latent Dirichlet Allocation (LDA), we acquire the interests for each user. Experimenting with the dataset provided within the ECML PKDD Discovery Challenge 2009, our method makes better performance.","PeriodicalId":6417,"journal":{"name":"2010 IEEE International Conference on Intelligent Systems and Knowledge Engineering","volume":"1 1","pages":"338-343"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"LDA-based user interests discovery in collaborative tagging system\",\"authors\":\"Shuang Song, Li Yu, Xiaoping Yang\",\"doi\":\"10.1109/ISKE.2010.5680852\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The success and popularity of collaborative tagging systems, such as delicious1, Flickr2, Last.fm3, has increasingly centered on. Users of these websites can easily tag their interested WebPages, photos and music with their preferred words. Subsequently, the extensive tagging data attract many researchers to mine useful information from these. In this paper, we propose a novel user interests quantified approach based on user-generated tags. Moreover, by means of the generative probabilistic model Latent Dirichlet Allocation (LDA), we acquire the interests for each user. Experimenting with the dataset provided within the ECML PKDD Discovery Challenge 2009, our method makes better performance.\",\"PeriodicalId\":6417,\"journal\":{\"name\":\"2010 IEEE International Conference on Intelligent Systems and Knowledge Engineering\",\"volume\":\"1 1\",\"pages\":\"338-343\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Intelligent Systems and Knowledge Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISKE.2010.5680852\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Intelligent Systems and Knowledge Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISKE.2010.5680852","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

协作标签系统的成功和普及,如delicious1, Flickr2, Last。Fm3,越来越集中于。这些网站的用户可以很容易地用他们喜欢的词标记他们感兴趣的网页、照片和音乐。随后,大量的标签数据吸引了许多研究者从中挖掘有用的信息。本文提出了一种基于用户生成标签的用户兴趣量化方法。此外,通过生成概率模型潜狄利克雷分配(Latent Dirichlet Allocation, LDA)来获取每个用户的兴趣。通过对ECML PKDD发现挑战赛2009中提供的数据集进行实验,我们的方法取得了更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
LDA-based user interests discovery in collaborative tagging system
The success and popularity of collaborative tagging systems, such as delicious1, Flickr2, Last.fm3, has increasingly centered on. Users of these websites can easily tag their interested WebPages, photos and music with their preferred words. Subsequently, the extensive tagging data attract many researchers to mine useful information from these. In this paper, we propose a novel user interests quantified approach based on user-generated tags. Moreover, by means of the generative probabilistic model Latent Dirichlet Allocation (LDA), we acquire the interests for each user. Experimenting with the dataset provided within the ECML PKDD Discovery Challenge 2009, our method makes better performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信