L. Chen, Rasmus Kyng, M. Gutenberg, Sushant Sachdeva
{"title":"一种基于APSP的寻找平衡稀疏切的简单框架","authors":"L. Chen, Rasmus Kyng, M. Gutenberg, Sushant Sachdeva","doi":"10.48550/arXiv.2209.08845","DOIUrl":null,"url":null,"abstract":"We present a very simple and intuitive algorithm to find balanced sparse cuts in a graph via shortest-paths. Our algorithm combines a new multiplicative-weights framework for solving unit-weight multi-commodity flows with standard ball growing arguments. Using Dijkstra's algorithm for computing the shortest paths afresh every time gives a very simple algorithm that runs in time $\\widetilde{O}(m^2/\\phi)$ and finds an $\\widetilde{O}(\\phi)$-sparse balanced cut, when the given graph has a $\\phi$-sparse balanced cut. Combining our algorithm with known deterministic data-structures for answering approximate All Pairs Shortest Paths (APSP) queries under increasing edge weights (decremental setting), we obtain a simple deterministic algorithm that finds $m^{o(1)}\\phi$-sparse balanced cuts in $m^{1+o(1)}/\\phi$ time. Our deterministic almost-linear time algorithm matches the state-of-the-art in randomized and deterministic settings up to subpolynomial factors, while being significantly simpler to understand and analyze, especially compared to the only almost-linear time deterministic algorithm, a recent breakthrough by Chuzhoy-Gao-Li-Nanongkai-Peng-Saranurak (FOCS 2020).","PeriodicalId":93491,"journal":{"name":"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)","volume":"29 1","pages":"42-55"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Simple Framework for Finding Balanced Sparse Cuts via APSP\",\"authors\":\"L. Chen, Rasmus Kyng, M. Gutenberg, Sushant Sachdeva\",\"doi\":\"10.48550/arXiv.2209.08845\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a very simple and intuitive algorithm to find balanced sparse cuts in a graph via shortest-paths. Our algorithm combines a new multiplicative-weights framework for solving unit-weight multi-commodity flows with standard ball growing arguments. Using Dijkstra's algorithm for computing the shortest paths afresh every time gives a very simple algorithm that runs in time $\\\\widetilde{O}(m^2/\\\\phi)$ and finds an $\\\\widetilde{O}(\\\\phi)$-sparse balanced cut, when the given graph has a $\\\\phi$-sparse balanced cut. Combining our algorithm with known deterministic data-structures for answering approximate All Pairs Shortest Paths (APSP) queries under increasing edge weights (decremental setting), we obtain a simple deterministic algorithm that finds $m^{o(1)}\\\\phi$-sparse balanced cuts in $m^{1+o(1)}/\\\\phi$ time. Our deterministic almost-linear time algorithm matches the state-of-the-art in randomized and deterministic settings up to subpolynomial factors, while being significantly simpler to understand and analyze, especially compared to the only almost-linear time deterministic algorithm, a recent breakthrough by Chuzhoy-Gao-Li-Nanongkai-Peng-Saranurak (FOCS 2020).\",\"PeriodicalId\":93491,\"journal\":{\"name\":\"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)\",\"volume\":\"29 1\",\"pages\":\"42-55\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2209.08845\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2209.08845","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Simple Framework for Finding Balanced Sparse Cuts via APSP
We present a very simple and intuitive algorithm to find balanced sparse cuts in a graph via shortest-paths. Our algorithm combines a new multiplicative-weights framework for solving unit-weight multi-commodity flows with standard ball growing arguments. Using Dijkstra's algorithm for computing the shortest paths afresh every time gives a very simple algorithm that runs in time $\widetilde{O}(m^2/\phi)$ and finds an $\widetilde{O}(\phi)$-sparse balanced cut, when the given graph has a $\phi$-sparse balanced cut. Combining our algorithm with known deterministic data-structures for answering approximate All Pairs Shortest Paths (APSP) queries under increasing edge weights (decremental setting), we obtain a simple deterministic algorithm that finds $m^{o(1)}\phi$-sparse balanced cuts in $m^{1+o(1)}/\phi$ time. Our deterministic almost-linear time algorithm matches the state-of-the-art in randomized and deterministic settings up to subpolynomial factors, while being significantly simpler to understand and analyze, especially compared to the only almost-linear time deterministic algorithm, a recent breakthrough by Chuzhoy-Gao-Li-Nanongkai-Peng-Saranurak (FOCS 2020).