一种基于APSP的寻找平衡稀疏切的简单框架

L. Chen, Rasmus Kyng, M. Gutenberg, Sushant Sachdeva
{"title":"一种基于APSP的寻找平衡稀疏切的简单框架","authors":"L. Chen, Rasmus Kyng, M. Gutenberg, Sushant Sachdeva","doi":"10.48550/arXiv.2209.08845","DOIUrl":null,"url":null,"abstract":"We present a very simple and intuitive algorithm to find balanced sparse cuts in a graph via shortest-paths. Our algorithm combines a new multiplicative-weights framework for solving unit-weight multi-commodity flows with standard ball growing arguments. Using Dijkstra's algorithm for computing the shortest paths afresh every time gives a very simple algorithm that runs in time $\\widetilde{O}(m^2/\\phi)$ and finds an $\\widetilde{O}(\\phi)$-sparse balanced cut, when the given graph has a $\\phi$-sparse balanced cut. Combining our algorithm with known deterministic data-structures for answering approximate All Pairs Shortest Paths (APSP) queries under increasing edge weights (decremental setting), we obtain a simple deterministic algorithm that finds $m^{o(1)}\\phi$-sparse balanced cuts in $m^{1+o(1)}/\\phi$ time. Our deterministic almost-linear time algorithm matches the state-of-the-art in randomized and deterministic settings up to subpolynomial factors, while being significantly simpler to understand and analyze, especially compared to the only almost-linear time deterministic algorithm, a recent breakthrough by Chuzhoy-Gao-Li-Nanongkai-Peng-Saranurak (FOCS 2020).","PeriodicalId":93491,"journal":{"name":"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)","volume":"29 1","pages":"42-55"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Simple Framework for Finding Balanced Sparse Cuts via APSP\",\"authors\":\"L. Chen, Rasmus Kyng, M. Gutenberg, Sushant Sachdeva\",\"doi\":\"10.48550/arXiv.2209.08845\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a very simple and intuitive algorithm to find balanced sparse cuts in a graph via shortest-paths. Our algorithm combines a new multiplicative-weights framework for solving unit-weight multi-commodity flows with standard ball growing arguments. Using Dijkstra's algorithm for computing the shortest paths afresh every time gives a very simple algorithm that runs in time $\\\\widetilde{O}(m^2/\\\\phi)$ and finds an $\\\\widetilde{O}(\\\\phi)$-sparse balanced cut, when the given graph has a $\\\\phi$-sparse balanced cut. Combining our algorithm with known deterministic data-structures for answering approximate All Pairs Shortest Paths (APSP) queries under increasing edge weights (decremental setting), we obtain a simple deterministic algorithm that finds $m^{o(1)}\\\\phi$-sparse balanced cuts in $m^{1+o(1)}/\\\\phi$ time. Our deterministic almost-linear time algorithm matches the state-of-the-art in randomized and deterministic settings up to subpolynomial factors, while being significantly simpler to understand and analyze, especially compared to the only almost-linear time deterministic algorithm, a recent breakthrough by Chuzhoy-Gao-Li-Nanongkai-Peng-Saranurak (FOCS 2020).\",\"PeriodicalId\":93491,\"journal\":{\"name\":\"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)\",\"volume\":\"29 1\",\"pages\":\"42-55\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2209.08845\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2209.08845","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们提出了一种非常简单直观的算法,通过最短路径在图中找到平衡稀疏切割。我们的算法结合了一个新的乘权框架来解决单位权重的多商品流和标准球增长参数。每次使用Dijkstra算法重新计算最短路径给出了一个非常简单的算法,该算法运行时间为$\ widdetilde {O}(m^2/\phi)$并找到$\ widdetilde {O}(\phi)$-稀疏平衡切,当给定的图具有$\phi$-稀疏平衡切时。将我们的算法与已知的确定性数据结构相结合,用于在边权增加(递减设置)的情况下回答近似全对最短路径(APSP)查询,我们得到了一个简单的确定性算法,该算法在$m^{1+o(1)}/\phi$时间内找到$m^{o(1)}\phi$-稀疏平衡切。我们的确定性近线性时间算法与最先进的随机和确定性设置匹配到次多项式因子,同时更容易理解和分析,特别是与chuzoy - gao -li - nanongkaii - peng - saranurak (FOCS 2020)最近的突破的唯一的近线性时间确定性算法相比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Simple Framework for Finding Balanced Sparse Cuts via APSP
We present a very simple and intuitive algorithm to find balanced sparse cuts in a graph via shortest-paths. Our algorithm combines a new multiplicative-weights framework for solving unit-weight multi-commodity flows with standard ball growing arguments. Using Dijkstra's algorithm for computing the shortest paths afresh every time gives a very simple algorithm that runs in time $\widetilde{O}(m^2/\phi)$ and finds an $\widetilde{O}(\phi)$-sparse balanced cut, when the given graph has a $\phi$-sparse balanced cut. Combining our algorithm with known deterministic data-structures for answering approximate All Pairs Shortest Paths (APSP) queries under increasing edge weights (decremental setting), we obtain a simple deterministic algorithm that finds $m^{o(1)}\phi$-sparse balanced cuts in $m^{1+o(1)}/\phi$ time. Our deterministic almost-linear time algorithm matches the state-of-the-art in randomized and deterministic settings up to subpolynomial factors, while being significantly simpler to understand and analyze, especially compared to the only almost-linear time deterministic algorithm, a recent breakthrough by Chuzhoy-Gao-Li-Nanongkai-Peng-Saranurak (FOCS 2020).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信