用自编码器学习左主分岔形状特征

Nanway Chen, R. Gharleghi, A. Sowmya, S. Beier
{"title":"用自编码器学习左主分岔形状特征","authors":"Nanway Chen, R. Gharleghi, A. Sowmya, S. Beier","doi":"10.1109/ISBI52829.2022.9761591","DOIUrl":null,"url":null,"abstract":"Geometric characteristics of the coronary arteries have been suggested as potential markers for disease risk. However, evaluation of such characteristics rely on judgement by human experts, and are thus variable and may lack sophistication. Here we apply recent advances in 3D deep learning to automatically obtain shape representation of the Left Main Bifurcation (LMB) of the coronary artery. We train a Variational Auto-Encoder based on the FoldingNet architecture to encode LMB shape features in a 450-dimension feature vector. The geometric features of patient-specific LMBs can then be manipulated by modifying, combining or interpolating the feature vectors before decoding. We also show that these vectors, on average, perform better than hand-crafted features in predicting measures of adverse blood flow (oscillating shear index or ‘OSI’, relative residence time ‘RRT’ and time averaged wall shear stress ‘TAWSS’) with a R2 goodness of fit value of 84.1% compared to 79.7%. These learned representations can also be used in other downstream predictive modelling tasks where an encoded version of a LMB is needed.","PeriodicalId":6827,"journal":{"name":"2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI)","volume":"62 3 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning Left Main Bifurcation Shape Features with an Autoencoder\",\"authors\":\"Nanway Chen, R. Gharleghi, A. Sowmya, S. Beier\",\"doi\":\"10.1109/ISBI52829.2022.9761591\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Geometric characteristics of the coronary arteries have been suggested as potential markers for disease risk. However, evaluation of such characteristics rely on judgement by human experts, and are thus variable and may lack sophistication. Here we apply recent advances in 3D deep learning to automatically obtain shape representation of the Left Main Bifurcation (LMB) of the coronary artery. We train a Variational Auto-Encoder based on the FoldingNet architecture to encode LMB shape features in a 450-dimension feature vector. The geometric features of patient-specific LMBs can then be manipulated by modifying, combining or interpolating the feature vectors before decoding. We also show that these vectors, on average, perform better than hand-crafted features in predicting measures of adverse blood flow (oscillating shear index or ‘OSI’, relative residence time ‘RRT’ and time averaged wall shear stress ‘TAWSS’) with a R2 goodness of fit value of 84.1% compared to 79.7%. These learned representations can also be used in other downstream predictive modelling tasks where an encoded version of a LMB is needed.\",\"PeriodicalId\":6827,\"journal\":{\"name\":\"2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI)\",\"volume\":\"62 3 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI52829.2022.9761591\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI52829.2022.9761591","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

冠状动脉的几何特征被认为是疾病风险的潜在标志。然而,对这些特征的评价依赖于人类专家的判断,因此是可变的,可能缺乏复杂性。在这里,我们应用3D深度学习的最新进展来自动获得冠状动脉左主干分叉(LMB)的形状表示。我们训练了一个基于FoldingNet架构的变分自编码器,对LMB形状特征进行450维特征向量的编码。在解码之前,可以通过修改、组合或插值特征向量来操纵特定患者lmb的几何特征。我们还表明,这些向量在预测不良血流指标(振荡剪切指数或“OSI”,相对停留时间“RRT”和时间平均壁剪切应力“TAWSS”)方面的平均表现优于手工制作的特征,R2拟合优度为84.1%,而不是79.7%。这些学习到的表示也可以用于其他下游预测建模任务,其中需要LMB的编码版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning Left Main Bifurcation Shape Features with an Autoencoder
Geometric characteristics of the coronary arteries have been suggested as potential markers for disease risk. However, evaluation of such characteristics rely on judgement by human experts, and are thus variable and may lack sophistication. Here we apply recent advances in 3D deep learning to automatically obtain shape representation of the Left Main Bifurcation (LMB) of the coronary artery. We train a Variational Auto-Encoder based on the FoldingNet architecture to encode LMB shape features in a 450-dimension feature vector. The geometric features of patient-specific LMBs can then be manipulated by modifying, combining or interpolating the feature vectors before decoding. We also show that these vectors, on average, perform better than hand-crafted features in predicting measures of adverse blood flow (oscillating shear index or ‘OSI’, relative residence time ‘RRT’ and time averaged wall shear stress ‘TAWSS’) with a R2 goodness of fit value of 84.1% compared to 79.7%. These learned representations can also be used in other downstream predictive modelling tasks where an encoded version of a LMB is needed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信