M-Hazy模及其同态定理

IF 0.7 Q2 MATHEMATICS
Donghua Huo, Hongyu Liu
{"title":"M-Hazy模及其同态定理","authors":"Donghua Huo, Hongyu Liu","doi":"10.1155/2023/3581113","DOIUrl":null,"url":null,"abstract":"Based on a completely distributive lattice \n \n M\n \n , we propose a new fuzzification approach to a module, which leads to the concept of an \n \n M\n \n -hazy module. Different from the traditional fuzzification approach that defines a fuzzy algebra as a fuzzy subset of a classical algebra, we introduce an \n \n M\n \n -hazy module by fuzzifications of algebraic operations. Then, we investigate the fundamental properties of \n \n M\n \n -hazy modules and \n \n M\n \n -hazy submodules. In particular, we present the \n \n M\n \n -hazy module homomorphism theorem.","PeriodicalId":43667,"journal":{"name":"Muenster Journal of Mathematics","volume":"6 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"M-Hazy Module and Its Homomorphism Theorem\",\"authors\":\"Donghua Huo, Hongyu Liu\",\"doi\":\"10.1155/2023/3581113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Based on a completely distributive lattice \\n \\n M\\n \\n , we propose a new fuzzification approach to a module, which leads to the concept of an \\n \\n M\\n \\n -hazy module. Different from the traditional fuzzification approach that defines a fuzzy algebra as a fuzzy subset of a classical algebra, we introduce an \\n \\n M\\n \\n -hazy module by fuzzifications of algebraic operations. Then, we investigate the fundamental properties of \\n \\n M\\n \\n -hazy modules and \\n \\n M\\n \\n -hazy submodules. In particular, we present the \\n \\n M\\n \\n -hazy module homomorphism theorem.\",\"PeriodicalId\":43667,\"journal\":{\"name\":\"Muenster Journal of Mathematics\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Muenster Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/3581113\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Muenster Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/3581113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

基于完全分布格M,我们提出了一种新的模模糊化方法,从而引出了M -模糊模的概念。与传统的模糊化方法将模糊代数定义为经典代数的模糊子集不同,我们通过代数运算的模糊化引入了M -模糊模块。然后,我们研究了M -hazy模和M -hazy子模的基本性质。特别地,我们给出了M -朦胧模同态定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
M-Hazy Module and Its Homomorphism Theorem
Based on a completely distributive lattice M , we propose a new fuzzification approach to a module, which leads to the concept of an M -hazy module. Different from the traditional fuzzification approach that defines a fuzzy algebra as a fuzzy subset of a classical algebra, we introduce an M -hazy module by fuzzifications of algebraic operations. Then, we investigate the fundamental properties of M -hazy modules and M -hazy submodules. In particular, we present the M -hazy module homomorphism theorem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信