G. Leal, Daniela C. Loureiro da Silva, Beatriz Naomy Watacabe, L. Ciotti, R. M. Antoniassi, R. Giudici, M. Linardi, J. Vaz, E. Spinacé
{"title":"采用硼氢化物还原法制备近环境温度下优先氧化CO的Au/TiO2催化剂","authors":"G. Leal, Daniela C. Loureiro da Silva, Beatriz Naomy Watacabe, L. Ciotti, R. M. Antoniassi, R. Giudici, M. Linardi, J. Vaz, E. Spinacé","doi":"10.1515/cse-2019-0002","DOIUrl":null,"url":null,"abstract":"Abstract Au nanoparticles were prepared in solution using HAuCl4.3H2O as Au precursor, sodium citrate as stabilizing agent and sodium borohydride as reducing agent. The influence of synthesis parameters such as BH4:Au and Citrate:Au ratios were studied. In a further step, the stabilized Au nanoparticles were supported on TiO2 with different Au loadings (wt%). The resulting Au/TiO2 catalysts were characterized by Energy-dispersive X-ray spectroscopy, X-ray diffraction and Transmission Electron Microscopy and tested for the preferential oxidation of carbon monoxide in hydrogen-rich stream. Au nanoparticles stabilized in solution were obtained with sizes in the range of 3-4 nm. After supported on TiO2, the Au nanoparticles size did not change and the Au/TiO2 catalysts exhibited excellent performance and stability in the temperature range of 20 - 50°C.","PeriodicalId":9642,"journal":{"name":"Catalysis for Sustainable Energy","volume":"20 1","pages":"12 - 6"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Au/TiO2 catalysts prepared by borohydride reduction for preferential CO oxidation at near-ambient temperature\",\"authors\":\"G. Leal, Daniela C. Loureiro da Silva, Beatriz Naomy Watacabe, L. Ciotti, R. M. Antoniassi, R. Giudici, M. Linardi, J. Vaz, E. Spinacé\",\"doi\":\"10.1515/cse-2019-0002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Au nanoparticles were prepared in solution using HAuCl4.3H2O as Au precursor, sodium citrate as stabilizing agent and sodium borohydride as reducing agent. The influence of synthesis parameters such as BH4:Au and Citrate:Au ratios were studied. In a further step, the stabilized Au nanoparticles were supported on TiO2 with different Au loadings (wt%). The resulting Au/TiO2 catalysts were characterized by Energy-dispersive X-ray spectroscopy, X-ray diffraction and Transmission Electron Microscopy and tested for the preferential oxidation of carbon monoxide in hydrogen-rich stream. Au nanoparticles stabilized in solution were obtained with sizes in the range of 3-4 nm. After supported on TiO2, the Au nanoparticles size did not change and the Au/TiO2 catalysts exhibited excellent performance and stability in the temperature range of 20 - 50°C.\",\"PeriodicalId\":9642,\"journal\":{\"name\":\"Catalysis for Sustainable Energy\",\"volume\":\"20 1\",\"pages\":\"12 - 6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysis for Sustainable Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/cse-2019-0002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis for Sustainable Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/cse-2019-0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Au/TiO2 catalysts prepared by borohydride reduction for preferential CO oxidation at near-ambient temperature
Abstract Au nanoparticles were prepared in solution using HAuCl4.3H2O as Au precursor, sodium citrate as stabilizing agent and sodium borohydride as reducing agent. The influence of synthesis parameters such as BH4:Au and Citrate:Au ratios were studied. In a further step, the stabilized Au nanoparticles were supported on TiO2 with different Au loadings (wt%). The resulting Au/TiO2 catalysts were characterized by Energy-dispersive X-ray spectroscopy, X-ray diffraction and Transmission Electron Microscopy and tested for the preferential oxidation of carbon monoxide in hydrogen-rich stream. Au nanoparticles stabilized in solution were obtained with sizes in the range of 3-4 nm. After supported on TiO2, the Au nanoparticles size did not change and the Au/TiO2 catalysts exhibited excellent performance and stability in the temperature range of 20 - 50°C.