关于形状优化的一些最新进展

Grégoire Allaire , Antoine Henrot
{"title":"关于形状优化的一些最新进展","authors":"Grégoire Allaire ,&nbsp;Antoine Henrot","doi":"10.1016/S1620-7742(01)01349-6","DOIUrl":null,"url":null,"abstract":"<div><p>In this Note we give a short review on recent developements in shape optimization. We explain how the generic non-existence of solutions can be circumvent. Either one can impose some geometric restrictions on the class of admissible domains to get existence (we then explain how to write the usual optimality conditions), or generalized designs are allowed which leads to relaxation by homogenization techniques (we thus obtain topology optimization methods).</p></div>","PeriodicalId":100302,"journal":{"name":"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics","volume":"329 5","pages":"Pages 383-396"},"PeriodicalIF":0.0000,"publicationDate":"2001-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1620-7742(01)01349-6","citationCount":"36","resultStr":"{\"title\":\"On some recent advances in shape optimization\",\"authors\":\"Grégoire Allaire ,&nbsp;Antoine Henrot\",\"doi\":\"10.1016/S1620-7742(01)01349-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this Note we give a short review on recent developements in shape optimization. We explain how the generic non-existence of solutions can be circumvent. Either one can impose some geometric restrictions on the class of admissible domains to get existence (we then explain how to write the usual optimality conditions), or generalized designs are allowed which leads to relaxation by homogenization techniques (we thus obtain topology optimization methods).</p></div>\",\"PeriodicalId\":100302,\"journal\":{\"name\":\"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics\",\"volume\":\"329 5\",\"pages\":\"Pages 383-396\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1620-7742(01)01349-6\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1620774201013496\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1620774201013496","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

摘要

在这篇文章中,我们对形状优化的最新发展做一个简短的回顾。我们将解释如何绕过解的一般不存在性。我们可以对允许域的类别施加一些几何限制以获得存在性(然后我们解释如何编写通常的最优性条件),或者允许广义设计,从而通过均匀化技术导致松弛(因此我们获得拓扑优化方法)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On some recent advances in shape optimization

In this Note we give a short review on recent developements in shape optimization. We explain how the generic non-existence of solutions can be circumvent. Either one can impose some geometric restrictions on the class of admissible domains to get existence (we then explain how to write the usual optimality conditions), or generalized designs are allowed which leads to relaxation by homogenization techniques (we thus obtain topology optimization methods).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信