关于新的表面局域传输特征模

IF 1.2 4区 数学 Q2 MATHEMATICS, APPLIED
Youjun Deng, Yan Jiang, Hongyu Liu, Kai Zhang
{"title":"关于新的表面局域传输特征模","authors":"Youjun Deng, Yan Jiang, Hongyu Liu, Kai Zhang","doi":"10.3934/ipi.2021063","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>Consider the transmission eigenvalue problem</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id=\"FE1\"> \\begin{document}$ (\\Delta+k^2\\mathbf{n}^2) w = 0, \\ \\ (\\Delta+k^2)v = 0\\ \\ \\mbox{in}\\ \\ \\Omega;\\quad w = v, \\ \\ \\partial_\\nu w = \\partial_\\nu v\\ \\ \\mbox{on} \\ \\partial\\Omega. $\\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>It is shown in [<xref ref-type=\"bibr\" rid=\"b16\">16</xref>] that there exists a sequence of eigenfunctions <inline-formula><tex-math id=\"M1\">\\begin{document}$ (w_m, v_m)_{m\\in\\mathbb{N}} $\\end{document}</tex-math></inline-formula> associated with <inline-formula><tex-math id=\"M2\">\\begin{document}$ k_m\\rightarrow \\infty $\\end{document}</tex-math></inline-formula> such that either <inline-formula><tex-math id=\"M3\">\\begin{document}$ \\{w_m\\}_{m\\in\\mathbb{N}} $\\end{document}</tex-math></inline-formula> or <inline-formula><tex-math id=\"M4\">\\begin{document}$ \\{v_m\\}_{m\\in\\mathbb{N}} $\\end{document}</tex-math></inline-formula> are surface-localized, depending on <inline-formula><tex-math id=\"M5\">\\begin{document}$ \\mathbf{n}>1 $\\end{document}</tex-math></inline-formula> or <inline-formula><tex-math id=\"M6\">\\begin{document}$ 0<\\mathbf{n}<1 $\\end{document}</tex-math></inline-formula>. In this paper, we discover a new type of surface-localized transmission eigenmodes by constructing a sequence of transmission eigenfunctions <inline-formula><tex-math id=\"M7\">\\begin{document}$ (w_m, v_m)_{m\\in\\mathbb{N}} $\\end{document}</tex-math></inline-formula> associated with <inline-formula><tex-math id=\"M8\">\\begin{document}$ k_m\\rightarrow \\infty $\\end{document}</tex-math></inline-formula> such that both <inline-formula><tex-math id=\"M9\">\\begin{document}$ \\{w_m\\}_{m\\in\\mathbb{N}} $\\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id=\"M10\">\\begin{document}$ \\{v_m\\}_{m\\in\\mathbb{N}} $\\end{document}</tex-math></inline-formula> are surface-localized, no matter <inline-formula><tex-math id=\"M11\">\\begin{document}$ \\mathbf{n}>1 $\\end{document}</tex-math></inline-formula> or <inline-formula><tex-math id=\"M12\">\\begin{document}$ 0<\\mathbf{n}<1 $\\end{document}</tex-math></inline-formula>. Though our study is confined within the radial geometry, the construction is subtle and technical.</p>","PeriodicalId":50274,"journal":{"name":"Inverse Problems and Imaging","volume":"6 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2021-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"On new surface-localized transmission eigenmodes\",\"authors\":\"Youjun Deng, Yan Jiang, Hongyu Liu, Kai Zhang\",\"doi\":\"10.3934/ipi.2021063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p style='text-indent:20px;'>Consider the transmission eigenvalue problem</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id=\\\"FE1\\\"> \\\\begin{document}$ (\\\\Delta+k^2\\\\mathbf{n}^2) w = 0, \\\\ \\\\ (\\\\Delta+k^2)v = 0\\\\ \\\\ \\\\mbox{in}\\\\ \\\\ \\\\Omega;\\\\quad w = v, \\\\ \\\\ \\\\partial_\\\\nu w = \\\\partial_\\\\nu v\\\\ \\\\ \\\\mbox{on} \\\\ \\\\partial\\\\Omega. $\\\\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>It is shown in [<xref ref-type=\\\"bibr\\\" rid=\\\"b16\\\">16</xref>] that there exists a sequence of eigenfunctions <inline-formula><tex-math id=\\\"M1\\\">\\\\begin{document}$ (w_m, v_m)_{m\\\\in\\\\mathbb{N}} $\\\\end{document}</tex-math></inline-formula> associated with <inline-formula><tex-math id=\\\"M2\\\">\\\\begin{document}$ k_m\\\\rightarrow \\\\infty $\\\\end{document}</tex-math></inline-formula> such that either <inline-formula><tex-math id=\\\"M3\\\">\\\\begin{document}$ \\\\{w_m\\\\}_{m\\\\in\\\\mathbb{N}} $\\\\end{document}</tex-math></inline-formula> or <inline-formula><tex-math id=\\\"M4\\\">\\\\begin{document}$ \\\\{v_m\\\\}_{m\\\\in\\\\mathbb{N}} $\\\\end{document}</tex-math></inline-formula> are surface-localized, depending on <inline-formula><tex-math id=\\\"M5\\\">\\\\begin{document}$ \\\\mathbf{n}>1 $\\\\end{document}</tex-math></inline-formula> or <inline-formula><tex-math id=\\\"M6\\\">\\\\begin{document}$ 0<\\\\mathbf{n}<1 $\\\\end{document}</tex-math></inline-formula>. In this paper, we discover a new type of surface-localized transmission eigenmodes by constructing a sequence of transmission eigenfunctions <inline-formula><tex-math id=\\\"M7\\\">\\\\begin{document}$ (w_m, v_m)_{m\\\\in\\\\mathbb{N}} $\\\\end{document}</tex-math></inline-formula> associated with <inline-formula><tex-math id=\\\"M8\\\">\\\\begin{document}$ k_m\\\\rightarrow \\\\infty $\\\\end{document}</tex-math></inline-formula> such that both <inline-formula><tex-math id=\\\"M9\\\">\\\\begin{document}$ \\\\{w_m\\\\}_{m\\\\in\\\\mathbb{N}} $\\\\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id=\\\"M10\\\">\\\\begin{document}$ \\\\{v_m\\\\}_{m\\\\in\\\\mathbb{N}} $\\\\end{document}</tex-math></inline-formula> are surface-localized, no matter <inline-formula><tex-math id=\\\"M11\\\">\\\\begin{document}$ \\\\mathbf{n}>1 $\\\\end{document}</tex-math></inline-formula> or <inline-formula><tex-math id=\\\"M12\\\">\\\\begin{document}$ 0<\\\\mathbf{n}<1 $\\\\end{document}</tex-math></inline-formula>. Though our study is confined within the radial geometry, the construction is subtle and technical.</p>\",\"PeriodicalId\":50274,\"journal\":{\"name\":\"Inverse Problems and Imaging\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2021-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inverse Problems and Imaging\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/ipi.2021063\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inverse Problems and Imaging","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/ipi.2021063","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 14

摘要

考虑传输特征值问题\begin{document}$ (\Delta+k^2\mathbf{n}^2) w = 0, \ \ (\Delta+k^2)v = 0\ \mbox{in}\ \ \Omega;\quad w = v, \ \ \partial_\nu w = \partial_\nu v\ \mbox{on} \ \partial\Omega。b[16]中显示,存在一个特征函数序列\begin{document}$ (w_m, v_m)_{m\ \在\mathbb{N}} $\end{document}中与\begin{document}$ k_m\rightarrow \infty $\end{document}相关联,使得\begin{document}$ \ \ w_m\ {m\ \在\mathbb{N}} $\end{document}或\begin{document}$ \ \ v_m\ {m\ \在\mathbb{N}} $\end{document}是表面本地化的,取决于\begin{document}$ \mathbf{N} >1 $\end{document}或\begin{document}$ 0。本文通过构造一个传输特征函数序列\begin{document}$ (w_m, v_m)_{m\ In \mathbb{N}} $\end{document}与\begin{document}$ k_m\rightarrow \infty $\end{document}相关联,使得\begin{document}$ \ \ w_m\ {m\ In \mathbb{N}} $\end{document}和\begin{document}$ \{v_m\ {m\ In \mathbb{N}} $\end{document}都是表面局部化的,从而发现了一种新的表面局部化的传输特征模。无论\begin{document}$ \mathbf{n}>1 $\end{document}或\begin{document}$ 0。虽然我们的研究局限于径向几何,但建筑是微妙和技术的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On new surface-localized transmission eigenmodes

Consider the transmission eigenvalue problem

It is shown in [16] that there exists a sequence of eigenfunctions \begin{document}$ (w_m, v_m)_{m\in\mathbb{N}} $\end{document} associated with \begin{document}$ k_m\rightarrow \infty $\end{document} such that either \begin{document}$ \{w_m\}_{m\in\mathbb{N}} $\end{document} or \begin{document}$ \{v_m\}_{m\in\mathbb{N}} $\end{document} are surface-localized, depending on \begin{document}$ \mathbf{n}>1 $\end{document} or \begin{document}$ 0<\mathbf{n}<1 $\end{document}. In this paper, we discover a new type of surface-localized transmission eigenmodes by constructing a sequence of transmission eigenfunctions \begin{document}$ (w_m, v_m)_{m\in\mathbb{N}} $\end{document} associated with \begin{document}$ k_m\rightarrow \infty $\end{document} such that both \begin{document}$ \{w_m\}_{m\in\mathbb{N}} $\end{document} and \begin{document}$ \{v_m\}_{m\in\mathbb{N}} $\end{document} are surface-localized, no matter \begin{document}$ \mathbf{n}>1 $\end{document} or \begin{document}$ 0<\mathbf{n}<1 $\end{document}. Though our study is confined within the radial geometry, the construction is subtle and technical.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Inverse Problems and Imaging
Inverse Problems and Imaging 数学-物理:数学物理
CiteScore
2.50
自引率
0.00%
发文量
55
审稿时长
>12 weeks
期刊介绍: Inverse Problems and Imaging publishes research articles of the highest quality that employ innovative mathematical and modeling techniques to study inverse and imaging problems arising in engineering and other sciences. Every published paper has a strong mathematical orientation employing methods from such areas as control theory, discrete mathematics, differential geometry, harmonic analysis, functional analysis, integral geometry, mathematical physics, numerical analysis, optimization, partial differential equations, and stochastic and statistical methods. The field of applications includes medical and other imaging, nondestructive testing, geophysical prospection and remote sensing as well as image analysis and image processing. This journal is committed to recording important new results in its field and will maintain the highest standards of innovation and quality. To be published in this journal, a paper must be correct, novel, nontrivial and of interest to a substantial number of researchers and readers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信