{"title":"关于新的表面局域传输特征模","authors":"Youjun Deng, Yan Jiang, Hongyu Liu, Kai Zhang","doi":"10.3934/ipi.2021063","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>Consider the transmission eigenvalue problem</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id=\"FE1\"> \\begin{document}$ (\\Delta+k^2\\mathbf{n}^2) w = 0, \\ \\ (\\Delta+k^2)v = 0\\ \\ \\mbox{in}\\ \\ \\Omega;\\quad w = v, \\ \\ \\partial_\\nu w = \\partial_\\nu v\\ \\ \\mbox{on} \\ \\partial\\Omega. $\\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>It is shown in [<xref ref-type=\"bibr\" rid=\"b16\">16</xref>] that there exists a sequence of eigenfunctions <inline-formula><tex-math id=\"M1\">\\begin{document}$ (w_m, v_m)_{m\\in\\mathbb{N}} $\\end{document}</tex-math></inline-formula> associated with <inline-formula><tex-math id=\"M2\">\\begin{document}$ k_m\\rightarrow \\infty $\\end{document}</tex-math></inline-formula> such that either <inline-formula><tex-math id=\"M3\">\\begin{document}$ \\{w_m\\}_{m\\in\\mathbb{N}} $\\end{document}</tex-math></inline-formula> or <inline-formula><tex-math id=\"M4\">\\begin{document}$ \\{v_m\\}_{m\\in\\mathbb{N}} $\\end{document}</tex-math></inline-formula> are surface-localized, depending on <inline-formula><tex-math id=\"M5\">\\begin{document}$ \\mathbf{n}>1 $\\end{document}</tex-math></inline-formula> or <inline-formula><tex-math id=\"M6\">\\begin{document}$ 0<\\mathbf{n}<1 $\\end{document}</tex-math></inline-formula>. In this paper, we discover a new type of surface-localized transmission eigenmodes by constructing a sequence of transmission eigenfunctions <inline-formula><tex-math id=\"M7\">\\begin{document}$ (w_m, v_m)_{m\\in\\mathbb{N}} $\\end{document}</tex-math></inline-formula> associated with <inline-formula><tex-math id=\"M8\">\\begin{document}$ k_m\\rightarrow \\infty $\\end{document}</tex-math></inline-formula> such that both <inline-formula><tex-math id=\"M9\">\\begin{document}$ \\{w_m\\}_{m\\in\\mathbb{N}} $\\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id=\"M10\">\\begin{document}$ \\{v_m\\}_{m\\in\\mathbb{N}} $\\end{document}</tex-math></inline-formula> are surface-localized, no matter <inline-formula><tex-math id=\"M11\">\\begin{document}$ \\mathbf{n}>1 $\\end{document}</tex-math></inline-formula> or <inline-formula><tex-math id=\"M12\">\\begin{document}$ 0<\\mathbf{n}<1 $\\end{document}</tex-math></inline-formula>. Though our study is confined within the radial geometry, the construction is subtle and technical.</p>","PeriodicalId":50274,"journal":{"name":"Inverse Problems and Imaging","volume":"6 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2021-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"On new surface-localized transmission eigenmodes\",\"authors\":\"Youjun Deng, Yan Jiang, Hongyu Liu, Kai Zhang\",\"doi\":\"10.3934/ipi.2021063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p style='text-indent:20px;'>Consider the transmission eigenvalue problem</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id=\\\"FE1\\\"> \\\\begin{document}$ (\\\\Delta+k^2\\\\mathbf{n}^2) w = 0, \\\\ \\\\ (\\\\Delta+k^2)v = 0\\\\ \\\\ \\\\mbox{in}\\\\ \\\\ \\\\Omega;\\\\quad w = v, \\\\ \\\\ \\\\partial_\\\\nu w = \\\\partial_\\\\nu v\\\\ \\\\ \\\\mbox{on} \\\\ \\\\partial\\\\Omega. $\\\\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>It is shown in [<xref ref-type=\\\"bibr\\\" rid=\\\"b16\\\">16</xref>] that there exists a sequence of eigenfunctions <inline-formula><tex-math id=\\\"M1\\\">\\\\begin{document}$ (w_m, v_m)_{m\\\\in\\\\mathbb{N}} $\\\\end{document}</tex-math></inline-formula> associated with <inline-formula><tex-math id=\\\"M2\\\">\\\\begin{document}$ k_m\\\\rightarrow \\\\infty $\\\\end{document}</tex-math></inline-formula> such that either <inline-formula><tex-math id=\\\"M3\\\">\\\\begin{document}$ \\\\{w_m\\\\}_{m\\\\in\\\\mathbb{N}} $\\\\end{document}</tex-math></inline-formula> or <inline-formula><tex-math id=\\\"M4\\\">\\\\begin{document}$ \\\\{v_m\\\\}_{m\\\\in\\\\mathbb{N}} $\\\\end{document}</tex-math></inline-formula> are surface-localized, depending on <inline-formula><tex-math id=\\\"M5\\\">\\\\begin{document}$ \\\\mathbf{n}>1 $\\\\end{document}</tex-math></inline-formula> or <inline-formula><tex-math id=\\\"M6\\\">\\\\begin{document}$ 0<\\\\mathbf{n}<1 $\\\\end{document}</tex-math></inline-formula>. In this paper, we discover a new type of surface-localized transmission eigenmodes by constructing a sequence of transmission eigenfunctions <inline-formula><tex-math id=\\\"M7\\\">\\\\begin{document}$ (w_m, v_m)_{m\\\\in\\\\mathbb{N}} $\\\\end{document}</tex-math></inline-formula> associated with <inline-formula><tex-math id=\\\"M8\\\">\\\\begin{document}$ k_m\\\\rightarrow \\\\infty $\\\\end{document}</tex-math></inline-formula> such that both <inline-formula><tex-math id=\\\"M9\\\">\\\\begin{document}$ \\\\{w_m\\\\}_{m\\\\in\\\\mathbb{N}} $\\\\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id=\\\"M10\\\">\\\\begin{document}$ \\\\{v_m\\\\}_{m\\\\in\\\\mathbb{N}} $\\\\end{document}</tex-math></inline-formula> are surface-localized, no matter <inline-formula><tex-math id=\\\"M11\\\">\\\\begin{document}$ \\\\mathbf{n}>1 $\\\\end{document}</tex-math></inline-formula> or <inline-formula><tex-math id=\\\"M12\\\">\\\\begin{document}$ 0<\\\\mathbf{n}<1 $\\\\end{document}</tex-math></inline-formula>. Though our study is confined within the radial geometry, the construction is subtle and technical.</p>\",\"PeriodicalId\":50274,\"journal\":{\"name\":\"Inverse Problems and Imaging\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2021-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inverse Problems and Imaging\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/ipi.2021063\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inverse Problems and Imaging","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/ipi.2021063","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
\begin{document}$ (\Delta+k^2\mathbf{n}^2) w = 0, \ \ (\Delta+k^2)v = 0\ \ \mbox{in}\ \ \Omega;\quad w = v, \ \ \partial_\nu w = \partial_\nu v\ \ \mbox{on} \ \partial\Omega. $\end{document}
It is shown in [16] that there exists a sequence of eigenfunctions \begin{document}$ (w_m, v_m)_{m\in\mathbb{N}} $\end{document} associated with \begin{document}$ k_m\rightarrow \infty $\end{document} such that either \begin{document}$ \{w_m\}_{m\in\mathbb{N}} $\end{document} or \begin{document}$ \{v_m\}_{m\in\mathbb{N}} $\end{document} are surface-localized, depending on \begin{document}$ \mathbf{n}>1 $\end{document} or \begin{document}$ 0<\mathbf{n}<1 $\end{document}. In this paper, we discover a new type of surface-localized transmission eigenmodes by constructing a sequence of transmission eigenfunctions \begin{document}$ (w_m, v_m)_{m\in\mathbb{N}} $\end{document} associated with \begin{document}$ k_m\rightarrow \infty $\end{document} such that both \begin{document}$ \{w_m\}_{m\in\mathbb{N}} $\end{document} and \begin{document}$ \{v_m\}_{m\in\mathbb{N}} $\end{document} are surface-localized, no matter \begin{document}$ \mathbf{n}>1 $\end{document} or \begin{document}$ 0<\mathbf{n}<1 $\end{document}. Though our study is confined within the radial geometry, the construction is subtle and technical.
期刊介绍:
Inverse Problems and Imaging publishes research articles of the highest quality that employ innovative mathematical and modeling techniques to study inverse and imaging problems arising in engineering and other sciences. Every published paper has a strong mathematical orientation employing methods from such areas as control theory, discrete mathematics, differential geometry, harmonic analysis, functional analysis, integral geometry, mathematical physics, numerical analysis, optimization, partial differential equations, and stochastic and statistical methods. The field of applications includes medical and other imaging, nondestructive testing, geophysical prospection and remote sensing as well as image analysis and image processing.
This journal is committed to recording important new results in its field and will maintain the highest standards of innovation and quality. To be published in this journal, a paper must be correct, novel, nontrivial and of interest to a substantial number of researchers and readers.