实时密集立体系统中成本-体积聚合的端到端学习

Andrey Kuzmin, Dmitry Mikushin, V. Lempitsky
{"title":"实时密集立体系统中成本-体积聚合的端到端学习","authors":"Andrey Kuzmin, Dmitry Mikushin, V. Lempitsky","doi":"10.1109/MLSP.2017.8168183","DOIUrl":null,"url":null,"abstract":"We present a new deep learning-based approach for dense stereo matching. Compared to previous works, our approach does not use deep learning of pixel appearance descriptors, employing very fast classical matching scores instead. At the same time, our approach uses a deep convolutional network to predict the local parameters of cost volume aggregation process, which in this paper we implement using differentiable domain transform. By treating such transform as a recurrent neural network, we are able to train our whole system that includes cost volume computation, cost-volume aggregation (smoothing), and winner-takes-all disparity selection end-to-end. The resulting method is highly efficient at test time, while achieving good matching accuracy. On the KITTI 2012 and KITTI 2015 benchmark, it achieves a result of 5.08% and 6.34% error rate respectively while running at 29 frames per second rate on a modern GPU.","PeriodicalId":6542,"journal":{"name":"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)","volume":"1 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"End-to-End learning of cost-volume aggregation for real-time dense stereo\",\"authors\":\"Andrey Kuzmin, Dmitry Mikushin, V. Lempitsky\",\"doi\":\"10.1109/MLSP.2017.8168183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a new deep learning-based approach for dense stereo matching. Compared to previous works, our approach does not use deep learning of pixel appearance descriptors, employing very fast classical matching scores instead. At the same time, our approach uses a deep convolutional network to predict the local parameters of cost volume aggregation process, which in this paper we implement using differentiable domain transform. By treating such transform as a recurrent neural network, we are able to train our whole system that includes cost volume computation, cost-volume aggregation (smoothing), and winner-takes-all disparity selection end-to-end. The resulting method is highly efficient at test time, while achieving good matching accuracy. On the KITTI 2012 and KITTI 2015 benchmark, it achieves a result of 5.08% and 6.34% error rate respectively while running at 29 frames per second rate on a modern GPU.\",\"PeriodicalId\":6542,\"journal\":{\"name\":\"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)\",\"volume\":\"1 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MLSP.2017.8168183\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MLSP.2017.8168183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

我们提出了一种新的基于深度学习的密集立体匹配方法。与以前的工作相比,我们的方法没有使用像素外观描述符的深度学习,而是使用非常快速的经典匹配分数。同时,我们的方法使用深度卷积网络来预测成本体积聚集过程的局部参数,本文使用可微域变换来实现。通过将这种转换视为递归神经网络,我们能够训练整个系统,包括成本体积计算,成本体积聚合(平滑)和端到端赢家通吃的差异选择。所得到的方法在测试时效率很高,同时获得了良好的匹配精度。在KITTI 2012和KITTI 2015基准测试中,它在现代GPU上以每秒29帧的速率运行时分别达到了5.08%和6.34%的错误率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
End-to-End learning of cost-volume aggregation for real-time dense stereo
We present a new deep learning-based approach for dense stereo matching. Compared to previous works, our approach does not use deep learning of pixel appearance descriptors, employing very fast classical matching scores instead. At the same time, our approach uses a deep convolutional network to predict the local parameters of cost volume aggregation process, which in this paper we implement using differentiable domain transform. By treating such transform as a recurrent neural network, we are able to train our whole system that includes cost volume computation, cost-volume aggregation (smoothing), and winner-takes-all disparity selection end-to-end. The resulting method is highly efficient at test time, while achieving good matching accuracy. On the KITTI 2012 and KITTI 2015 benchmark, it achieves a result of 5.08% and 6.34% error rate respectively while running at 29 frames per second rate on a modern GPU.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信