D. Voigt, B.T. Wolschrijn, R.A. Cornelussen, R. Jansen, N. Bhattacharya, H.B. van Linden van den Heuvell, R.J.C. Spreeuw
{"title":"冷原子用弹性和非弹性倏逝波镜","authors":"D. Voigt, B.T. Wolschrijn, R.A. Cornelussen, R. Jansen, N. Bhattacharya, H.B. van Linden van den Heuvell, R.J.C. Spreeuw","doi":"10.1016/S1296-2147(01)01203-3","DOIUrl":null,"url":null,"abstract":"<div><p>We report on experiments on an evanescent-wave mirror for cold <sup>87</sup>Rb atoms. Measurements of the bouncing fraction show the importance of the Van der Waals attraction to the surface. We have directly observed radiation pressure parallel to the surface, exerted on the atoms by the evanescent-wave mirror. We analyze the radiation pressure by imaging the motion of the atom cloud after the bounce. The number of photon recoils ranges from 2 to 31. This is independent of laser power, inversely proportional to the detuning and proportional to the evanescent-wave decay length. By operating the mirror on an open transition, we have also observed atoms that bounce inelastically due to a spontaneous Raman transition. The observed distributions consist of a dense peak at the minimum velocity and a long tail of faster atoms, showing that the transition is a stochastic process with a strong preference to occur near the turning point of the bounce.</p></div>","PeriodicalId":100307,"journal":{"name":"Comptes Rendus de l'Académie des Sciences - Series IV - Physics-Astrophysics","volume":"2 4","pages":"Pages 619-624"},"PeriodicalIF":0.0000,"publicationDate":"2001-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1296-2147(01)01203-3","citationCount":"4","resultStr":"{\"title\":\"Elastic and inelastic evanescent-wave mirrors for cold atoms\",\"authors\":\"D. Voigt, B.T. Wolschrijn, R.A. Cornelussen, R. Jansen, N. Bhattacharya, H.B. van Linden van den Heuvell, R.J.C. Spreeuw\",\"doi\":\"10.1016/S1296-2147(01)01203-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We report on experiments on an evanescent-wave mirror for cold <sup>87</sup>Rb atoms. Measurements of the bouncing fraction show the importance of the Van der Waals attraction to the surface. We have directly observed radiation pressure parallel to the surface, exerted on the atoms by the evanescent-wave mirror. We analyze the radiation pressure by imaging the motion of the atom cloud after the bounce. The number of photon recoils ranges from 2 to 31. This is independent of laser power, inversely proportional to the detuning and proportional to the evanescent-wave decay length. By operating the mirror on an open transition, we have also observed atoms that bounce inelastically due to a spontaneous Raman transition. The observed distributions consist of a dense peak at the minimum velocity and a long tail of faster atoms, showing that the transition is a stochastic process with a strong preference to occur near the turning point of the bounce.</p></div>\",\"PeriodicalId\":100307,\"journal\":{\"name\":\"Comptes Rendus de l'Académie des Sciences - Series IV - Physics-Astrophysics\",\"volume\":\"2 4\",\"pages\":\"Pages 619-624\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1296-2147(01)01203-3\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comptes Rendus de l'Académie des Sciences - Series IV - Physics-Astrophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1296214701012033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus de l'Académie des Sciences - Series IV - Physics-Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1296214701012033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Elastic and inelastic evanescent-wave mirrors for cold atoms
We report on experiments on an evanescent-wave mirror for cold 87Rb atoms. Measurements of the bouncing fraction show the importance of the Van der Waals attraction to the surface. We have directly observed radiation pressure parallel to the surface, exerted on the atoms by the evanescent-wave mirror. We analyze the radiation pressure by imaging the motion of the atom cloud after the bounce. The number of photon recoils ranges from 2 to 31. This is independent of laser power, inversely proportional to the detuning and proportional to the evanescent-wave decay length. By operating the mirror on an open transition, we have also observed atoms that bounce inelastically due to a spontaneous Raman transition. The observed distributions consist of a dense peak at the minimum velocity and a long tail of faster atoms, showing that the transition is a stochastic process with a strong preference to occur near the turning point of the bounce.