{"title":"基于CFD的伞翼系统建模与控制","authors":"Wannan Wu, Qinglin Sun, Mingwei Sun, Zengqiang Chen","doi":"10.1109/DDCLS.2018.8516092","DOIUrl":null,"url":null,"abstract":"The calculation of canopy aerodynamic parameters plays an important part in the airdrop system. Based on the finite volume method, this paper calculates the aerodynamic parameters of the parafoil systems, and then the deflection and incision factors are estimated by the CFD output data. The obtained lift and drag coefficients instead of the traditional parameters based on lifting-line theory are incorporated into the aerodynamic equation of a parafoil system. The active disturbance rejection control strategy is applied to control the systems. The effectiveness of the proposed method can be demonstrated by the simulation results. The work in this paper may be a reference for the parafoil system design.","PeriodicalId":6565,"journal":{"name":"2018 IEEE 7th Data Driven Control and Learning Systems Conference (DDCLS)","volume":"14 1","pages":"295-301"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling and Control of Parafoil Systems Based on CFD\",\"authors\":\"Wannan Wu, Qinglin Sun, Mingwei Sun, Zengqiang Chen\",\"doi\":\"10.1109/DDCLS.2018.8516092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The calculation of canopy aerodynamic parameters plays an important part in the airdrop system. Based on the finite volume method, this paper calculates the aerodynamic parameters of the parafoil systems, and then the deflection and incision factors are estimated by the CFD output data. The obtained lift and drag coefficients instead of the traditional parameters based on lifting-line theory are incorporated into the aerodynamic equation of a parafoil system. The active disturbance rejection control strategy is applied to control the systems. The effectiveness of the proposed method can be demonstrated by the simulation results. The work in this paper may be a reference for the parafoil system design.\",\"PeriodicalId\":6565,\"journal\":{\"name\":\"2018 IEEE 7th Data Driven Control and Learning Systems Conference (DDCLS)\",\"volume\":\"14 1\",\"pages\":\"295-301\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 7th Data Driven Control and Learning Systems Conference (DDCLS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DDCLS.2018.8516092\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 7th Data Driven Control and Learning Systems Conference (DDCLS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DDCLS.2018.8516092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modeling and Control of Parafoil Systems Based on CFD
The calculation of canopy aerodynamic parameters plays an important part in the airdrop system. Based on the finite volume method, this paper calculates the aerodynamic parameters of the parafoil systems, and then the deflection and incision factors are estimated by the CFD output data. The obtained lift and drag coefficients instead of the traditional parameters based on lifting-line theory are incorporated into the aerodynamic equation of a parafoil system. The active disturbance rejection control strategy is applied to control the systems. The effectiveness of the proposed method can be demonstrated by the simulation results. The work in this paper may be a reference for the parafoil system design.